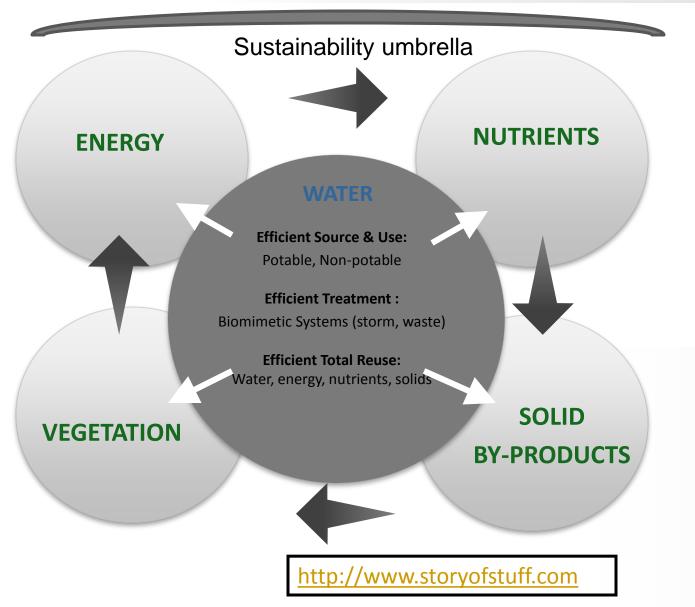
NUTRIENTS, ENERGY, WATER AND SUSTAINABLE MANAGEMENT (NEWS) CONSIDERATIONS PRESENTATION TO SW ONSITE CONFERENCE, JAN 2014

A. R. RUBIN, PROFESSOR EMERITUS, NCSU-BAE


HANDS DOWN – BEST AVAILABLE – BB(G)B FOR NEWS APPROACH

Bob's Blue (gray) Box

- BOD, TSS, TN, Coli ND
 - Suited for unrestricted reuse
- No Odor, Low Power
- No sludge
- No management or oversight required
- Low cost
- NSF or ETV unnecessary
- All fiction

THE FUTURE: WATER-CENTRIC INTEGRATED INFRASTRUCTURE:

NEW PRODUCTS/SERVICES

ENERGY: Renewable: Biogas Efficiency

- Production (Heat Pump)
- Use (Audit/Conservation)

NUTRIENTS:

Nitrogen Phosphorus Potassium Soil Addatives

SOLID BY-PRODUCTS: Disposal Destruction Inorganic Stuff Organic Stuff

VEGETATION: Inedible, Edible Carbon Sequestration Biomass

REGARDLESS OF SCENARIO REUSE AND RECOVERY EMERGING

INDEPENDENT OR INNER CITY

Communities will operate resource recovery facilities (RRF)

Water

- Reclaimed at source
- Reclaimed at RRF


Energy

• digestion

Nutrients

- Urine harvest at home and business
- Biosolids derived at resource recovery

NYC PROJECTS RECOVER WATER

NUTRIENTS, ENERGY AND WATER

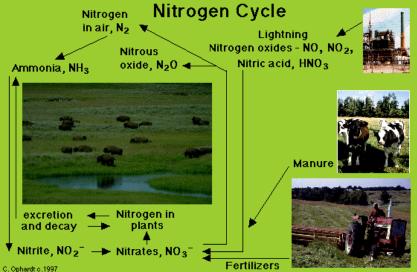
Nutrients

N and P

Energy

Septage and FOG digestion

Water


Reuse potential

NUTRIENTS – N, P AND 14 OTHERS

16 essential nutrients

Cycled through production, consumption and decomposition

Emerging P crisis

NUTRIENT REMOVAL?

Is it necessary? Does receiving environment dictate removal?

Can N and P be manages onsite as nutrient – plant uptake CNMP-

crop removal

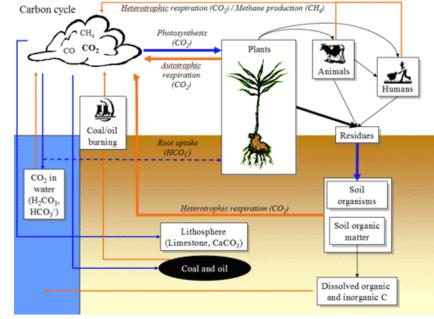
nutrient characteristics (ON, NH4+, NO3-)

placement - root zone???

timing – all year long???

Are energy recovery facilities available through local POTW?

Is there opportunity for private sector??


Anaerobic digestion technologies are well developed.

Is there market for heat or power???

CARBON/ENERGY

Carbon vs. renewable resources

Anaerobic processes and associated energy recovery

THE HYDROLOGIC CYCLE

Water recycled continuously for billions of years

Supply has not changed

Distribution has

- Weather patterns
- Changing climate

WATER TREATMENT

Aerobic and anaerobic

Varying levels attainable

Simple to complex

Emphasis on resource recovery

REUSE GUIDELINES

Guidelines because NO mandate

Variety of end uses

Recent interest in direct and indirect potable use

This document is available via the internet:

http://www.waterreuseguidel ines.org

TECHNICAL WASTEWATER ISSUES

TREATMENT Septic tank AS Reuse

> high level treatment and disinfection

DISPERSAL

Traditional SAS

Alternative SAS

- LPP
- Drip

NONTECHNICAL WASTEWATER ISSUES

O AND M Solids management Competent Personnel Supplies and Equipment Monitoring, Measuring, Reporting Corrective action PROGRAM MANAGEMENT

Sustainability

Finance

Improvement

SCIENCE AND ENGINEERING

BOD

Compounds containing organic Carbon

Energy for microorganisms

Oxygen required to degrade

1.5 Units O/Unit BOD

Easily removed in properly managed systems

Alkalinity necessary

NITROGEN

Organic and inorganic forms of N in wastewater

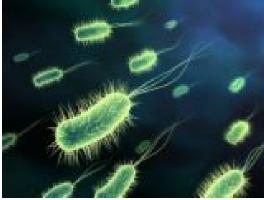
Both aerobic and anaerobic conditions necessary to degrade

Oxygen converts R-NH to NO

4.6 Units O/unit R-NH

Sensitive processes

Alkalinity necessary


ONSITE WASTEWATER TREATMENT

Physical – solids removal

Chemical – P removal

Biological – BOD removal

Aerobic/anaerobic

conditions necessary for N removal

* <u>Soil systems remain vital part of</u> the dispersal component

THE BEST SYSTEM IS DESIGNED TO ADDRESS SITE AND SOIL LIMITATIONS

Proper design addresses most limiting of the site and soil limitations and allows assimilation of all constituents on intended receiver site – Recommendations from Soils Consultants, agronomists, hydrogeologists, and farm/land manager

- Hydraulic
- Nutrient
- Organic and Inorganic

BIOCHEMICAL OXYGEN DEMAND (BOD)

Rate that organisms use oxygen to break down organic matter

High BOD levels indicate high levels of organic matter which rob O2 from water

Low DO undesirable and unhealthy for aquatic ecosystem

The best system removes BOD/COD/TSS to desired level

NITROGEN (N)

Four forms of N occur in wastewater

- Organic nitrogen
- Ammonia (NH₃) / ammonium (NH₄+)
- Nitrite (NO₂⁻)
- Nitrate (NO₃⁻)

Organic N is converted to NH₄⁺

 NH_4^+ is then converted to NO_2^- and NO_3^-

In C rich environment under anaerobic conditions nitrate converted to N gas

The best system removes nutrients to desired level

PHOSPHOROUS (P)

Three forms occur in wastewater

- orthophosphate
- polyphosphate
- organic phosphate

Usually measured as total P

The best system removes nutrients to desired level

In surface waters, these nutrients promote growth of algae and aquatic plants

P greatest concern in most fresh water environments

NSF PROGRAM OVERVIEW

Certification

- Testing
- Standards and Protocols

Environmental Technology Verification (ETV)

Research Services

Professional Accreditation

Field Effluent Monitoring:

- PA DEP Program
- National Standard

Field Service and Maintenance Monitoring

NSF-ANSI WASTEWATER STANDARDS

NSF/ANSI 41 -2011 Non-liquid saturated treatment systems (1978)

NSF/ANSI 46 -2010 Evaluation of components and devices used in wastewater (1997)

NSF/ANSI 240 -2011 Drainfield trench product sizing for gravity dispersal onsite wastewater treatment and dispersal systems (2011)

NSF/ANSI 40 -2010 Residential wastewater treatment systems (1970)

NSF/ANSI 245 -2010 Wastewater treatment systems – nitrogen reduction (2007)

NSF/ANSI 350 -2011 Onsite residential and commercial water reuse treatment systems (2011)

NSF/ANSI 350-1 -2011 Onsite residential and commercial graywater treatment systems for subsurface discharge (2011)

NSF/ANSI 360 -2010 Wastewater treatment systems – field performance verification (2010)

More may be developed as needed

TREATMENT SYSTEM VERIFICATION

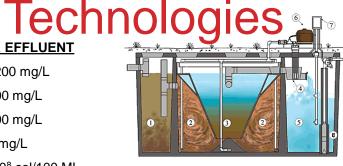
NSF

Establishes standard – NSF/ANSI

40, 240, 245, 350

Certifies technology to standard

MASSACHUSETTS TEST CENTER


Tests specific technology against NSF/ANSI standard

Verifies performance through rigorous testing

Performance of Onsite Treatment

SEPTIC TANK EFFLUENT

- BOD: 110 200 mg/L
- TSS: 50 100 mg/L
- TN: 40 100 mg/L
- TP: 5 15 mg/L
- Fecal: 10⁶ 10⁸ col/100 ML

AEROBIC UNIT EFFLUENT

- BOD:
 5 50 mg/L

 TSS:
 5 100 mg/L

 TN:
 25 60 mg/L

 TP:
 4 10 mg/L
 - Fecal: 10³ 10⁴ col/100 ML

SAND FILTER EFFLUENT

 BOD:
 2 - 15 mg/L

 TSS:
 5 - 20 mg/L

 TN:
 10 - 50 mg/L

 TP:
 <1 - 10 mg/L</td>

 Fecal:
 10¹ - 10³ col/100 ML

FOAM/TEXTILE FILTER EFFLUENT

- EVEN
 Event

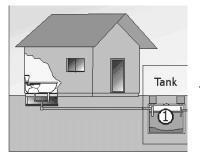
 BOD:
 5 15 mg/L

 TSS:
 5 10 mg/L

 TN:
 3 60 mg/L

 TP:
 5 15 mg/L

 Fecal:
 $10^1 10^3 \text{ col/100 ML}$


 FURTHER ATTENUATION BY SOIL

 BOD:
 >90%
- TSS:
 >90%

 TN:
 10 TO 20%

 TP:
 0 100%

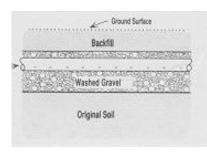
 Fecal:
 >99.99%

WASTEWATER FROM HOME

 BOD:
 110 - 400 mg/L

 TSS:
 100 - 350 mg/L

 TN:
 40 - 100 mg/L


 TP:
 5 - 15 mg/L

Fecal: 10⁶ - 10⁹ col/100 ML

SEPTIC TANK EFFLUENT, WITH RECYCLE

- BOD: 80 120 mg/L
- TSS: 50 80 mg/L
- TN: 10 30 mg/L
- TP: 5 15 mg/L
- Fecal: 10⁶ 10⁹ col/100 ML

PRETREATMENT

THE **"TANK"**

THE SEPTIC TANK PROVIDES

40% reduction of BOD

50% reduction of solids

Typical <u>residential</u> effluent

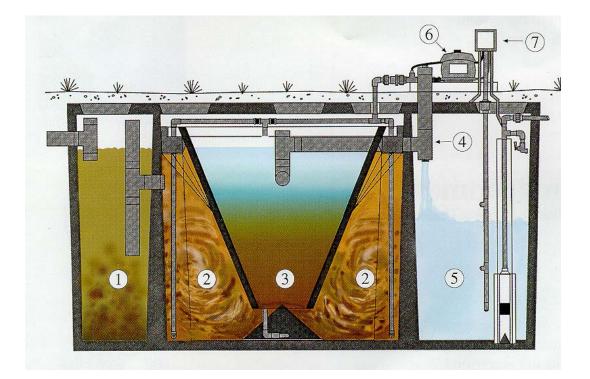
- 150 mg/l BOD
- 80 mg/I TSS
- 60 mg/l TN (most ammonia)
- <10 mg/l TP
- <10 mg/l FOG
- >1,000,000 FC organisms/ 100ml

In <u>general</u>, advanced treatment systems describes various technologies/designs to further reduce BOD, nutrients and solids in effluent

How?????

- By providing an "aerobic" and "anaerobic" environments
- Proper balance of organic matter, nutrients, alkalinity

Aerobic Treatment Units (ATU's)


- Suspended growth
- Fixed growth

Aerobic Treatment Units (ATU's)

- Use air compressor and air diffusers to "inject" oxygen into the effluent mix
 - More oxygen = more rapid digestion of "organic" material= less time and space
 - Suspended growth.....organisms floating in liquid
 - Air required as O2 supply and to maintain suspension,
 - energy required to supply air and suspend organisms
 - Fixed (attached) growth...structure provided for organisms to attach
 - Air supplied as liquid migrates into media,
 - energy necessary only to pump

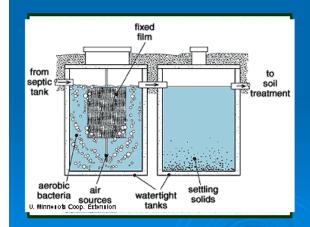
Aerobic Treatment Units (ATU's)

• Suspended growth unit

Media/ packed bed filters

- Generally introduction of oxygen is "passive"
- Often use pumps to "dose" media
- Sand...gravel....peat....fabric....plastic...foam....coconut husks
- Sometimes effluent recycled back through filter

Textile sheets/chips Or Foam Cubes


HYBRID ADVANCED TREATMENT

Aerobic Treatment Units (ATU's) and media

• Fixed (attached) growth and Suspended Media hybrid unit

Aerobic Treatment Unit

> Fixed/attached growth

Attached growth media

ADVANCED WASTEWATER TREATMENT

PROCESSES Process capabilities (BOD, TSS, Nutrients, Biologicals)

- NSF
- State Rules

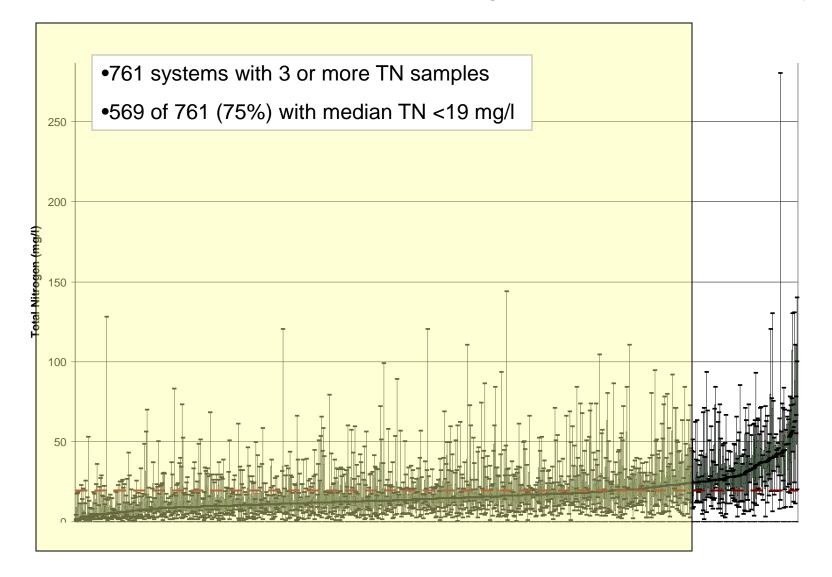
PRE1	REA	ТМЕ	ΕΝΤ

Fixed Media

Suspended

possible w/added Carbon

and Anaerobic conditions


media

High level of N and P

Parameter	BOD	TSS	Coliform	N
TS1	15 mg/l	15 mg/l	10000	10 NH4
TS2	10 mg/l	10 mg/l	1000	20 TN
Reuse	5 mg/l	5 mg/l	14	20 TN

SINGLE FAMILY ALL TYPES BY INDIVIDUAL SYSTEM

Three or More Samples with Full Nitrogen Series (Barnstable County)

Single Family all Types by System Type

Three or More Samples with Full Nitrogen Series (Barnstable Co)

System Type	Total with 3+ Samples	Total below 19mg/l	Percentage
All Types	761	569	75%
Advantex	27	21	78%
Amphidrome	4	3	75%
Bioclere	43	32	74%
FAST	442	355	80%
OMNI RSF	51	30	51%
RSF (Generic)	16	9	56%
RUCK	22	11	50%
Septitech	45	15	33%
Singulair	90	81	90%
Waterloo	11	9	90%

APPROVED OPTIONS

BAT System	Standard	Removal (%)	Concentration PPM
Advantex RT	3 rd party	76	14
Advantex AX 20	3 rd party	71	17
SeptiTech	ETV/245	67	20
HOOT BNR	3 rd party	64	21
Retrofast	ETV	57	25
Singulair(Norweco)	245	55	27
NSF Data - (Reuse)			
Biomicrobics MBR	350	80+	<10

FIELD VERIFICATION

System	Verification
HOOT ANR	NSF 245
Nitrix (add-on)	3 rd Party
Bionset	NSF 245
Microfast	NSF ETV
AquaKlear	NSF 245
EcoPod EN1	NSF 245
Hydroaction	NSF 245

REDUCE N – HARVEST URINE???

1.5 l/person/day

10 g urea (N)/person/d or about 12 lb/yr

Family of 4: 48 lb – N/yr

Who picks it up, who processes, use

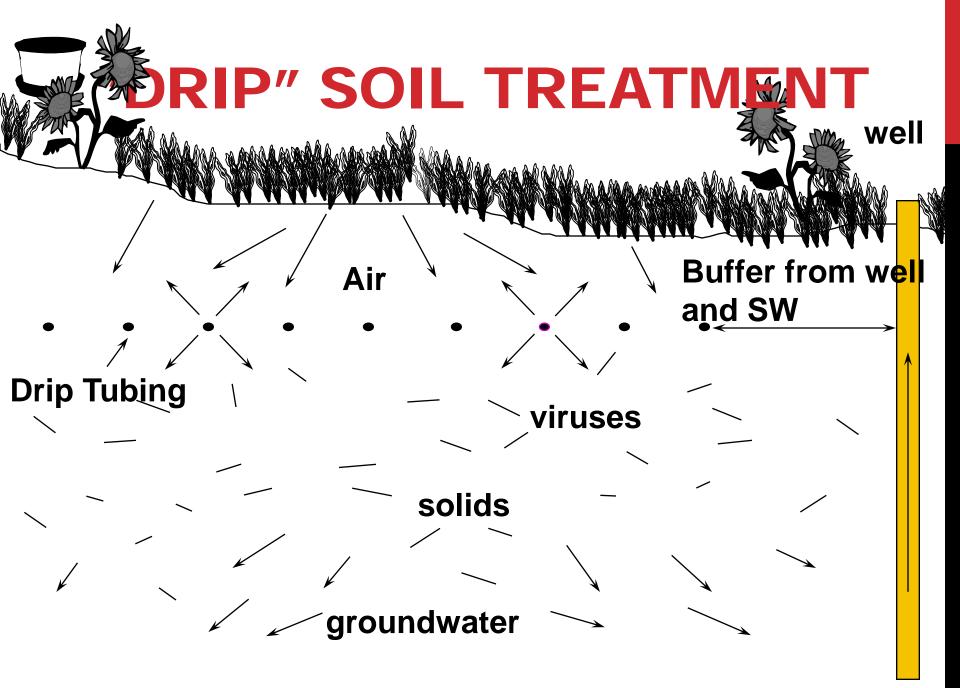
Solid waste companies, Ostara, Inc, fertilizer

- Sustainable source for N, P and K
- Yuck factor???

SOIL – INITIAL RECEIVER

SITE

Slope


Distance to water

- Groundwater
- Surface water

SOIL

Depth, Color, Texture, Structure, Consistence

FINAL RECEIVER

Air? Cooling towers?

legionella?

Groundwater

Quality implications

Transmissivity

Surface water

Quality (303 & 305)

Use

MANAGEMENT

- Operator
- Organization
- Long term sustainability
- **Onsite is the Infrastructure**
- **EPA Management Guidelines**

MANAGEMENT PROGRAMS

Program Level	Feature
1. Inventory/awareness	Traditional system, low risk environment
2. Contract	Mechanical systems, low risk environment
3. Performance	Performance base, moderate risk environment
4. RME Operation	Performance base, professional operation
5. RME Ownership	Performance base, professional operation, high risk

ADVANCED TREATMENT

Cost

- Equipment
- Energy
- Maintenance

Benefit

- Significant Nutrient Removal Possible
- Soil "friendly"

BEST TECHNOLOGIES

Reliable and robust

Meets present and future need

Managed as part of infrastructure

It IS the wastewater infrastructure for the host site

And Bob's Blue (gray) box is a myth...