Microbial Indicators and Onsite Wastewater Treatment Systems: What Do We Really Know?

Jean McLain, Associate Director, University of Arizona Water Resources Research Ctr. Channah Rock, UA Dept. of Soil, Water and Environmental Science Kitt Farrell-Poe, UA Dept. of Agricultural and Biosystems Engineering

Outline

The indicator paradigm

Methods for identification and enumeration of microbial indicators

Case studies: methods are not failsafe

Discussion

25% of U.S. homes using septic systems

More than 4 billion gallons of wastewater per day dispersed below the ground surface

Adequately managed systems can protect public health and the environment

25% of U.S. homes using septic systems

More than 4 billion gallons of wastewater per day dispersed below the ground surface

Adequately managed systems can protect public health and the environment

10% of onsite systems have stopped working – 3rd most common source of groundwater contamination

Bacteria that are indicators of fecal contamination

Bacteria that are indicators of fecal contamination

Criteria:

- Should be present in the fecal material of warm-blooded animals
- Should "indicate" the presence of pathogens but should have a longer survival time than pathogens
- Should not grow in environmental samples

- Should be present in the fecal material of warm-blooded animals
- Should "indicate" the presence of pathogens but should have a longer survival time than pathogens
- Should not grow in environmental samples
- Relatively inexpensive to measure
- Measurements are accurate
- Total and/or Fecal coliforms; Escherichia coli; Enterococcus

Thus, use indicators

Statistical modeling has estimated predictive relationship between indicators and pathogens

Growth in environment = reduced utility as an indicator

Do Indicators Grow in the Environment?

Do Indicators Grow in the Environment?

1999: Byanppanahalli and Fujioka – evidence for growth of *E. coli* in tropical soils

2004: Yamahara et al. – Growth of enterococci in sterile beach sands

2006: Ishii et al. – Growth of *E. coli* in Lake Superior sediments

Do Indicators Grow in the Environment?

1999: Byanppanahalli and Fujioka – evidence for growth of *E. coli* in tropical soils

2004: Yamahara et al. – Growth of enterococci in sterile beach sands

2006: Ishii et al. – Growth of *E. coli* in Lake Superior sediments

Total coliforms, fecal coliforms

Pathogens

- Should be present in the fecal material of warm-blooded animals
- Should "indicate" the presence of pathogens but should have a longer survival time than pathogens
- Should not grow in environmental samples
- Relatively inexpensive to measure
- Measurements are accurate
- Total and/or Fecal coliforms; Escherichia coli; Enterococcus

- Should be present in the fecal material of warm-blooded animals
- Should "indicate" the presence of pathogens but should have a longer survival time than pathogens
- Should not grow in environmental samples
- Relatively inexpensive to measure
- Measurements are accurate
- Total and/or Fecal coliforms; Escherichia coli; Enterococcus

Defined Substrate Technology

Membrane Filtration

Membrane Filtration

Membrane Filtration

Cultivation Methods

- *E. coli,* Enterococcus, Total and Fecal Coliforms
- \$2 5 per sample
- Relatively easy to use

Cultivation Methods

- *E. coli,* Enterococcus, Total and Fecal Coliforms
- \$2 5 per sample
- Relatively easy to use
- Accuracy?

- Tertiary-treated reclaimed municipal wastewater
- Water entering wetland: no viable *E. coli*

- Tertiary-treated reclaimed municipal wastewater
- Water entering wetland: no viable *E. coli*
- Seasonal *E. coli* blooms
 ~ 2,500 CFU 100 mL⁻¹
- Guidelines for urban irrigation:
 800 CFU total coliforms 100 mL⁻¹

- Tertiary-treated reclaimed municipal wastewater
- Water entering wetland: no viable *E. coli*
- Seasonal *E. coli* blooms
 ~ 2,500 CFU 100 mL⁻¹
- Guidelines for urban irrigation: 800 CFU total coliforms 100 mL⁻¹

PCR Confirmation of Selected Isolates

Gene target codes for outer membrane protein common to all known *E. coli*: 116 bp

Corrected Data: *E. coli* in Wetland Outflow

Corrected Data: *E. coli* in Wetland Outflow

Water Quality: Pinal and Yuma Counties

• Colilert, Membrane Filtration

Water Quality: Pinal and Yuma Counties

- Colilert, Membrane Filtration
- Rate of "false positives" lowest in Tucson stormwater (9.1%)
- More than 35% in irrigation water and irrigated soils

What Are The Implications?

- Sequencing confirms PCR results
 - Salmonella
 - Staphylococcus
 - Shigella
 - Klebsiella

What Are The Implications?

- Sequencing confirms PCR results
 - Salmonella
 - Staphylococcus
 - Shigella
 - Klebsiella
 - Brachybacterium, Ochrobacterium, Lysinibacillus

Molecular Methods: PCR, qPCR

Amplifying a DNA region of interest that is unique to the target bacterial group

Inexpensive? Easy?

Molecular Methods: PCR, qPCR

Amplifying a DNA region of interest that is unique to the target bacterial group

Inexpensive? Easy?

Accurate?

Microbial and Chemical Source Tracking

Methodologies aimed at identifying dominant sources of contamination in environmental samples

Chemical Microbial

Microbial and Chemical Source Tracking

Methodologies aimed at identifying dominant sources of contamination in environmental samples

Microbial and Chemical Source Tracking

Methodologies aimed at identifying dominant sources of contamination in environmental samples

Microbial Source Tracking Using Host-Specific Bacteroides 16s rRNA Molecular Markers

Feces, rumens, and other cavities of humans and other animals THE PROS

- Strict anaerobes (limited potential for growth in the environment)
- Host-specific genetic markers can be used to evaluate fecal pollution

Microbial Source Tracking Using Host-Specific Bacteroides 16s rRNA Molecular Markers

Feces, rumens, and other cavities of humans and other animals THE PROS

- Strict anaerobes (limited potential for growth in the environment)
- Host-specific genetic markers can be used to evaluate fecal pollution

THE CONS

Misinformation abounds. "Exclusively in the guts of warm blooded-animals" (2000)

Source Tracking in Arizona Recycled municipal wastewater pond

Source Tracking in Arizona

Recycled municipal wastewater pond

Used real-time PCR to quantify human-specific *Bacteroides* molecular markers in pond and irrigation water

Over 6 months, human-specific markers averaged 4500 per 100 mL of water

Source Tracking in Arizona

Recycled municipal wastewater pond

Used real-time PCR to quantify human-specific *Bacteroides* molecular markers in pond and irrigation water

Over 6 months, human-specific markers averaged 4500 per 100 mL of water

Did we identify human fecal contamination?

Human, Dog, Duck, Bovine

Human, Dog, Duck, Bovine, Tilapia

Human, Dog, Duck, Bovine, Tilapia, Catfish, Trout, Carp

4 of 5 "Human-specific" assays cross-amplified with at least one fish species

4 of 5 "Human-specific" assays cross-amplified with at least one fish species

Affects conclusions of published source tracking studies performed in water bodies containing fish.

A sound concept for predicting the presence of pathogenic bacteria

A sound concept for predicting the presence of pathogenic bacteria

- Total coliforms: General sanitary conditions
- Fecal coliforms: Shellfish and shellfish harvest waters
- *E. coli:* Recent fecal contamination
- Enterococcus: beach/bathing waters

Statistical methods for enumeration: an estimate, not a "hard number"

Statistical methods for enumeration: an estimate, not a "hard number"

Molecular methods: "where we are going"

Statistical methods for enumeration: an estimate, not a "hard number"

Molecular methods: "where we are going"

Knowledge of limitations stimulates open dialogue and is very important in development of standards (my opinion)

Acknowledgements

Collaborators and Co-Authors: USDA-ARS; UA and ASU

WateReuse Research Foundation; USDA-ARS; NSF

Graduate and Undergraduate Students and Technical Staff:

- Leila Kabiri-Badr
- Sharette Colbert

