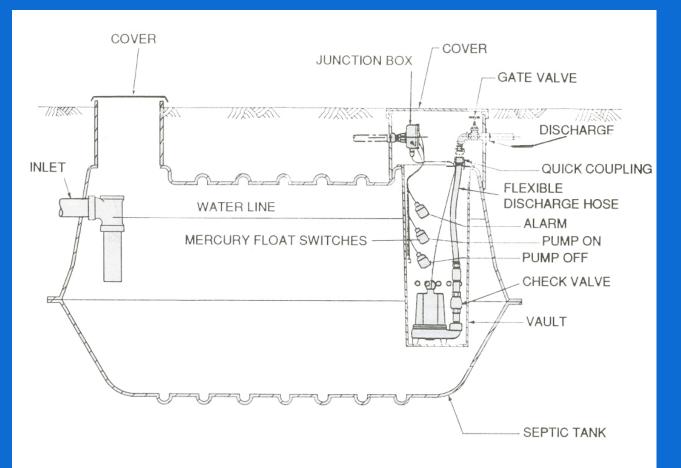

Sunset Bay: Next Generation Approach to Decentralized Cluster Systems

Terry Bounds, P.E.


Decentralized Small Community Trends 1970's

Decentralized Small Community Trends 1980's

1980's Special Sewer District Glide, Oregon

- 240,000 gpd design
- STEP/STEG collection (1100 EDU's)
- Oxidation ditch treatment (2 – 170,000 gallon channels)
- NPDES Permit (river discharge)
- Start-up: February 1980
- Average Influent characteristics
 - ~ BOD₅: 106 mg/L
 - ~TSS: 51 mg/L
 - ~ NH₃-N: 64 mg/l

Glide, Oregon treatment plant.

Recirculating Sand Filter Elkton, Oregon late 1980's

- 29,000 gpd design
- STEP/STEG collection
- RSF treatment
- Subsurface dispersal (Pressure)
- Start-up: 1989
- Average effluent characteristics
 ~ BOD₅: 3.8
 - ~TSS: 5.4

Elkton ... 11,000' Drainfield

Starbuck, Washington 1990's

- 20,000 gpd design
- STEG/STEP collection for 90 homes
- Community Self-Help project
- Drip Subsurface dispersal
- Effluent characteristics:
 - ~ BOD₅: < 2.0 to 3.5 mg/L
 - **~** TSS: < 1.0 to 5 mg/L
 - ~ TN: 8.9 mg/L average

Sunset Bay - Sharps Chapel, TN

The Location

 Scenic Properties Overlooking and Bordering Pristine Lake in a Picturesque Mountainous setting in Tennessee

The Challenge & Layout

- Rugged terrain
- Steep slopes
- Small lot layouts
- Build-as-you-go
- Seasonal Occupancy

The Challenge & Layout

- High variable flows
- Bordering lake
- Nitrate requirements

Boat Slips at Clubhouse

Clubhouse and Pool

The Solution

- Establish Utility
- STEP/STEG Effluent Sewer Collection
- AX-20 or AX20-RT On-lot Treatment
- Community drip field

Project Partners

- Designer Engineers: Environmental Systems Corporation
- Utility and equipment supplier: Hallsdale-Powell Utility District

Community Collection 4.5 miles of 3-, 6-, and 8-in PVC small diameter sewer lines

Design Parameters

- Design flow: 165,000 gpd
- 750 edus at build out
- Clubhouse with tennis court and swimming pool, boat launch and parking area

Permit Limits

45 mg/L BOD₅
20 mg/L Nitrate NO₃-N

Drip Area Based on Monthly Nitrate Loading

Rates

Lwn =	<u>Cp (Pr - PE</u> (1 - f)(Cr		
Where:	Lwn	=	allowable monthly hydraulic loading rate based on nitrogen limits, inches/month
	Ср	=	nitrogen concentration in the percolating wastewater, mg/L. This will usually be 10mg/L Nitrate-Nitrogen
	Pr		Five-year return monthly precipitation, inches/month
	PET	=	potential evapotranspiration, inches/month
	U	-	nitrogen uptake by cover, lbs/acre/year
			pounds/acre/year (value should not exceed 100 lbs/acre/year)
	Cn		Nitrate-Nitrogen concentration in applied wastewater, mg/L (after losses in preapplication treatment)
	f	=	fraction of applied nitrogen removed by denitrification and volatilization.

Residential Units

- Primary Treatment
 - ~1500 gallon, 2-compartment Barger concrete tanks
- Secondary Treatment
 - ~ AdvanTex AX-20 and AX-20RT

Phases

First installations March 2003120 homes as of 2013

Dispersal

- Subsurface discharge
- Two 25,000 gal equalization tanks
- •41,400 ft drip dispersal field
- •4.8 acre dispersal site

Orenco Systems[®] Incorporated

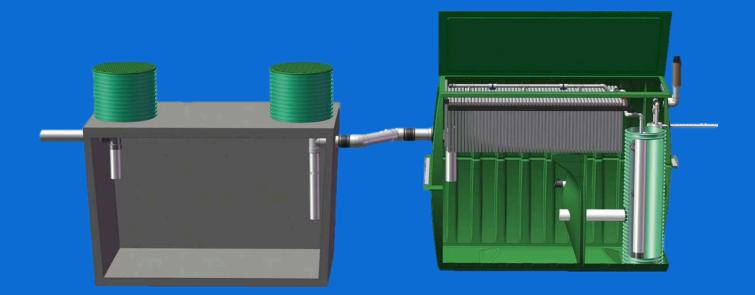
Dispersal Area

Benefits for Developers

- Reduced up-front cost
- Allow slow build-out
- Shorter installation time

Benefits for Homeowner and Utility

- Low energy cost
- Water re-use
- Water conservation
- Low capital investment



Costs (2012)

- AX unit plus 1500 gal local tank: ~ \$7,845
- Installation: ~ \$2,600

• Pressure sewer mains and drip dispersal: ~ \$520/home

Monthly Fees

- \$24.36 base rate for 1500 gallons used
- \$8.56 each additional 1000gal
- \$9 per user minimum for collection system

Operation & Maintenance Cost 2012 - HPUD

- 151 Total Logged Visits
- •96 Yearly Inspections
- •7 Installation Inspections
- •7 System Start Ups
- •41 Service Calls
- Total Man-Hours 186

Benefits for the Environment

- Nutrient reduction
- Watertight system

AdvanTex Effluent Quality

BOD TSS TKN NH₃-N NO₃-N pH Alk AX20 5.7 7.2 5.1 2.4 8.6 6.9 135

Permit limits were 45 mg/L BOD₅ and 20 mg/L Nitrate NO₃-N

Summary of Benefits

- Low infrastructure cost
- Modular build-out
- Shorter timeframe for design, approval, installation
- Utility managed system
- Power paid by property owners
- Lower power and billing costs for utilities
- Outstanding wastewater treatment
- Phasing in advanced treatment
- Protecting environment and reducing O&M costs
- Reduce risk of sewage overflows
- Improve troubleshooting characteristics
- Power and water conservation