Small Lot on the Lake? How Do I Fit It In

©2018 Colin Bishop

Achieving Balance Nature's Way

Achieving Bioreactor Balance

Water→Volume

Water->Volume

And on a starting

Water→Volume

Water→Rate

Water→Rate

Water→Rate

Air→Volume Oxygen = Aerobic

Air→Rate Oxygen = Aerobic

Emirares

ATT ATT

No Air Anoxic or Anaerobic

Time

Achieving Bioreactor Balance

Example Methods for Achieving Balance

- Primary treatment
 - Recognized performance for decades
 - Flattens hydraulic & organic load peaks (buffering)

Example Methods for Achieving Balance

- Timed dose pumping
 - Process control
 - Allows for correct balance of...
 - Water
 - Air
 - Time
 - Food

Health and Environmental Goals for Treated Effluent

- Disperse or reuse water
- It can't surface
- It can't pollute other water or the environment

Water Can Move In All Directions!

- Infiltration loading rates
 - GPD in 1 ft²
- Hydraulic linear loading
 - GPD per 1 ft
 - Horizontal flow capacity
 - Impacted by limiting layers

• Limiting layers

- Infiltration & linear loading rates
 - Soil characteristics
 - Presence/absence of biomat layer
 - Saturated or unsaturated flow
 - Capillary vs. gravitational forces

- Gravity drainfields
 progressively clog
- Anaerobic biomat
 - Sticky
 - Gooey
 - Thick

Water Mounding Models

- Step 1 \rightarrow Identify soil textures
- Step 2 → Estimate Ksat
- Step 3 → Use soil & site characteristics to select model
 - Identify limiting layers → impede water movement
 - Identify slope for horizontal water movement
- Step 4 → Know available length & area for drainfield
- Step 5 → Know effluent volume (gpd) & dosing pattern
- Step 6 \rightarrow Know effluent quality (BOD, TSS, etc)

Identify Ksat

 Soil texture used to estimate saturated hydraulic conductivity (Ksat) in water mounding models

Estimating Ksat

- Table is ballpark estimate
- Field test very helpful for tough sites

Ksat Values	Rawls et al, 1998		VA AOSS Regulations, 2011	
	mm/h	gpd/ft ²	cm/d	gpd/ft ²
Sand	181.90	107.11		
Fine Sand	141.30	83.20	>17	>4.17
Loamy Sand	123.00	72.43		
Sandy Loam	55.80	32.86		
Loam	6.20	3.65	10 to 17	2.45 to 4.17
Silt Loam	14.40	8.48		
Sandy Clay Loam	7.70	4.53		
Clay Loam	4.20	2.47	4 to <10	0.98 to <2.45
Silty Clay Loam	4.90	2.89		
Sandy Clay	0.90	0.53		
Silty Clay	1.80	1.06	<4	<0.98
Clay	2.00	1.18		

Water Mounding Models

- Incorporate Darcy's Law into equations
- Height of water mounding is calculated

Allen Model

- Water mounding height above saturated layer
 - Seasonal or permanent water table

Allen Model

$$H^2 = D^2 + \frac{Q}{\pi K} (\ln \frac{L}{R} + 1/2)$$

Poeter Model

• Height of water mound = H_{max}

Note: Remember to keep units the same.

Poeter Model

Thoughts and Suggestions

- Ksat tables are guides
 - Field measurements can be performed
- Models are GUIDES
- Always use professional judgment
- No substitution for walking sites
- Dosing regime & effluent quality play important roles
- Other models are available
 - University of Minnesota
 - Others

Greenwood Lake, New York

Greenwood Lake, New York

- Replacement system
- Sandy loam soil
- 24 inches deep over bedrock
- Site slope ~13%
- Front lot width = 40.33 feet

572 Jersey Ave, Greenwood Lake, NY 10925

P

41°12'47 58" N 74°18'24 87" W elev 644 ft

Google

Eve alt

Greenwood Lake, New York

Stinson Beach, California

- Depth to limiting layer = 30 inches
- Very limited space 25' x 25'
- Sandy clay loam over sandy clay
- Soil application rate = 0.5 gpd/ft²
- 200 gpd peak & 150 gpd avg design flow
- Linear loading rate of 10.6 gpd/ft due to space

Stinson Beach, California

Peat Fiber Biofilter Fill Pad

Stander St.

Total Water Reuse Opportunity

- NSF 350 in UPC
- E-Z Treat \rightarrow NSF 350
- Save water
- Further drainfield sizing reduction

Site Water Reduction

• Ecojohn → Incineration System

Colin Bishop, REHS, RS 928.433.3220 colin.bishop@anuainternational.com