## Traditions and Historic Practices vs. Science: Shifting to a Risk-Based Model for Onsite

©2018 Colin Bishop

# Out of Sight, Out of Mind Methods of Sewage Disposal

- By George E. Waring, Jr.
- "It has hitherto been and, in fact, it still is the practice of the world to consider its wastes satisfactorily disposed of when they are hidden from sight."



#### • 1913

#### **USPHS**, 1926



#### Public Health & The Environment

## USDA Sewage Disposal on the Farm & the Protection of Drinking Water





FIG. 1.-. The shallow barnyard well, with privy vault and manure heaps near by. The water is likely to receive fluid from these at any time.

# PA Septic Tanks for the Farm, 1927

### Lawrence, MA Experiment Station



FIG. 64. Experimental Filters at the Lawrence Experiment Station (copied by permission from Henneking, 1909).





• 1937

#### THE SEPTIC TANK ..... BULWARK of safety





These are the conveniences which you may enjoy in perfect safety—when a septic tank guards the parity of your drinking and cooking water.



#### • 1942 SEWERAGE and SEWAGE TREATMENT

By

ъ., н

#### W. A. HARDENBERGH

MEMBER, AMERICAN SOCIETY OF CIVIL ENGLNEERS COLONEL, SANITARY CORPS, U. S. ARMY



### Watertight Tanks

- 1924 Home Sewage Disposal book
- "To operate properly and to prevent pollution of the ground or the ground water, septic tanks should be watertight. Any material is permissible, so long as it is durable and does not leak."

### USPHS, 1926 Brick Septic Tank



#### USPH Bulletin No. 68, 1915 Effluent Filter

![](_page_17_Figure_1.jpeg)

#### Lowcock Aerated Filter, 1894 Intermittent Filtration

![](_page_18_Figure_1.jpeg)

#### Hardenbergh, 1942 Intermittent Filtration, cont'd

![](_page_19_Picture_1.jpeg)

FIG. 133. DISTRIBUTION SYSTEM FOR INTERMITTENT SAND FILTRATION.

#### Hardenbergh, 1924 Early "Chamber"

![](_page_20_Picture_1.jpeg)

surface drains of boards.

#### **CA Ag Extension**, 1933 & 1948 Early "Chamber" & "Half-pipe" Ditch width 24"---3 minimum Nanahana Naha Dirt fills 2x12Ditch width 24°-ື່ວໍ "minimum fill of rock or gravel (3 min size) Dirt fills Fig. 14 .-- Cross section of V-trough drain line. $DD \sim \infty$ 6 fill of rock or gravel (§ min, size)

Fig. 16.—Cross section of half-section pipe drain line.

น้อครามขาวงการเฉพาะว

#### 1929 Operation & Maintenance

![](_page_22_Figure_1.jpeg)

#### **Resource Capture & Reuse**

![](_page_23_Picture_1.jpeg)

FIG. 60. Getting in the Hay Crop on an English Sewage Farm.

# Resource Capture & Reuse, cont'd

![](_page_24_Picture_1.jpeg)

FIG. 62. Cornfield on the Pasadena Sewage Farm.

# Resource Capture & Reuse, cont'd

![](_page_25_Picture_1.jpeg)

FIG. 63. Walnuts on the Pasadena Sewage Farm.

# **Risk & Regulations**

- Address in design
- Verify at start-up
- Operation
  - Measure
  - Adjust
  - Report
- Correct

Regulations: What Do We Need to Address Risk?

- Plumbing  $\rightarrow$  UPC
- Electrical  $\rightarrow$  NEC
- Septic Tanks → IAPMO & ASTM
- Treatment Systems → NSF/ANSI
- Bioreactor optimization →
- Soil dispersal →
- Water reuse →
- Do states need to generally approve products?

# Regulations: What Do We Need to Address Risk?

Staged Treatment

![](_page_28_Figure_2.jpeg)

• What should we address in <u>design</u>?

• What should we verify at start-up?

What should we measure and report?

• How do we address <u>correction</u>?

• How do we address <u>correction</u>?

### **Operation & Enforcement**

- Addressing Risk
  - Fail-safe mechanism
    - Power loss
    - Post filtration/physical barrier

### **Operation & Enforcement**

- Addressing Risk
  - Flow surge control mechanism w/ alarm
    - Volume
    - Rate

#### **Operation & Enforcement**

| Risk Level | Impact                                                                                                                                                                                          | Suggested maintenance<br>frequency   |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| High       | Break of electromechanical component that<br>impacts directly system treatment performance –<br>Risk of discharging partially or untreated effluent                                             | 2 to 4 times a year                  |
| Low        | Simple electromechanical not allowing treatment<br>by-pass - impacts conveyance of water without<br>impacting system treatment performance – No<br>discharge of partially or untreated effluent | Once a year to<br>once every 2 years |
|            | Passive system that doesn't involved<br>electromechanical components                                                                                                                            |                                      |

#### **Finding Balance - Verification**

- Remote monitoring
  - Internet connected
  - Tracks water use
  - Catches motor issues
  - Uses any mobile device

![](_page_37_Picture_6.jpeg)

#### ANUA

#### NAVIGATION

- (1) Home
- + Add IOSite
- & Settings
- ⊖ Logout

#### System State

![](_page_38_Figure_7.jpeg)

![](_page_38_Figure_8.jpeg)

Discharge Pump 1 Amperage

![](_page_38_Figure_10.jpeg)

![](_page_38_Figure_11.jpeg)

![](_page_38_Figure_12.jpeg)

#### © 2018 Converge Productive Technologies - v0

*پ*و

### **Finding Balance**

Ultrasonic drainfield sensor

![](_page_39_Picture_2.jpeg)

# Finding Balance Septic Sitter Example

• Excessive ponding in portions from snowmelt or rain

![](_page_40_Figure_2.jpeg)

# Finding Balance Septic Sitter Example

- Pump tank with dosed drainfield
- Overloaded drainfield started recovering after dosing regimes changes

![](_page_41_Figure_3.jpeg)

![](_page_42_Picture_0.jpeg)

#### Colin Bishop, REHS, RS 928.433.3220 colin.bishop@anuainternational.com