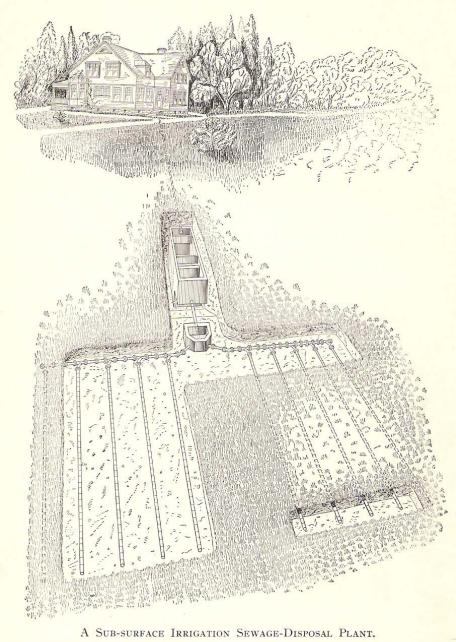
A Risk-Based To Onsite Regulations

2016 Southwest Onsite Wastewater Resource Water Conference

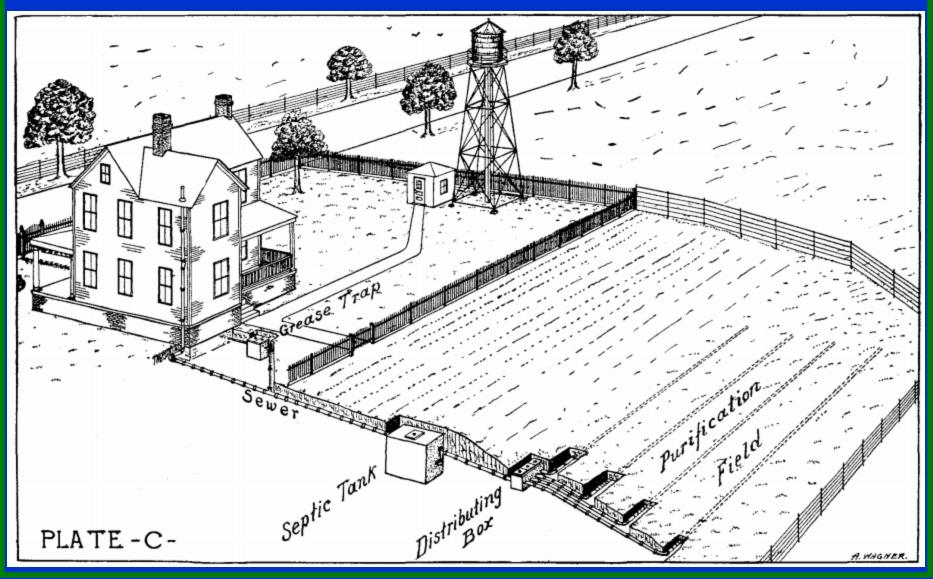
Colin Bishop, REHS, RS

©2016 Colin Bishop

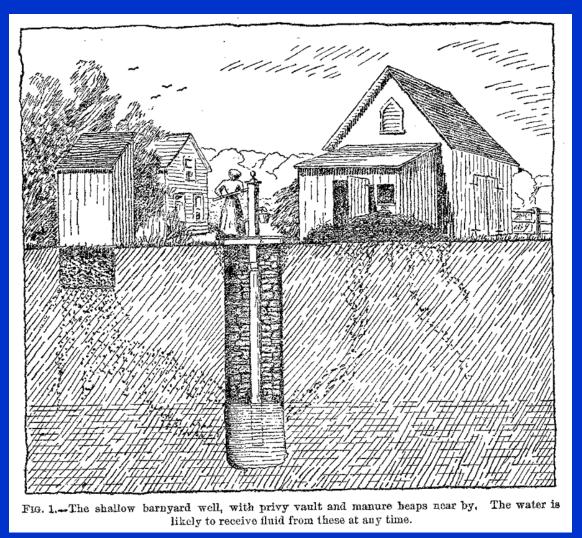

Out of Sight, Out of Mind Methods of Sewage Disposal

• By George E. Waring, Jr.

 "It has hitherto been – and, in fact, it still is – the practice of the world to consider its wastes satisfactorily disposed of when they are hidden from sight."



• 1913

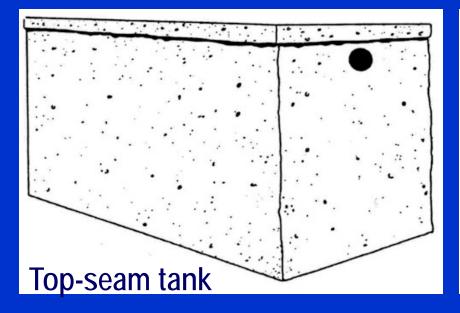

Sewage. Frontispiece.

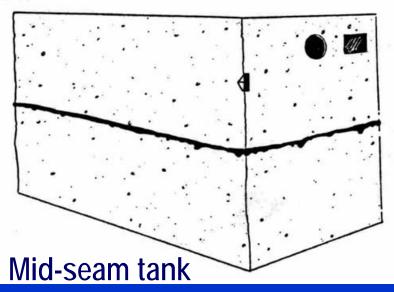
USPHS, 1926

Public Health Implications

Sewage Disposal on the Farm 1896

Mohave County Prescriptive Regs Example




Mohave County Watertightness Testing • Why did testing begin?

- Testing period from March 1995 February 1996
- 500 septic tanks water-tested
- Only new installations tested
- Tanks tested to the flow-line

Tank Examples

 Example of top-seam & mid-seam tanks

MC Testing Results

Tank type	#Pass test	#Fail test	% P /F	Total
Concrete mid-seam (2-piece)	307	108	74/26	415
Concrete slab cover (1-piece)	22	3	88/12	25
Fiberglass	58	0	100/0	58
Plastic	2	0	100/0	2
Total	389	111	78/22	500

- 2,500 gallons
- Leak at mid-seam

- 2,500 gallons
- Leak at mid-seam
- Leak in side-wall

- 1,000 gallons
- Mid-seam tank
- Bottom half collapsed
- Leak at top

Top leak -

No bottom half

Baffle

- 1,000 gallons
- Mid-seam tank
- Bottom half collapsed
- Leak at top

Collapsed · End-wall

Tank Manufacturing

- 1,000 gallon top half
- Extensive honeycombing at midseam

End Result?

Hearings at Arizona House of Representatives

Panel told of faulty septic tanks

Friday, August 4, 1995

Up to 80% said to be leaking in Mohave County

The Arizona Republic

By Jonathan Sidener The Arizona Republic

B6

As many as 80 percent of new Mohave County septic systems have significant leaks, a county environmental official told a state panel Thursday.

"There clearly is a problem," said Norm Marrah of the county health department. "It's not just one here or there. There are actual gaps in the tanks, actual gushers."

Problems with existing tanks have led Mohave County officials to begin testing all of the new tanks that have been installed.

The House panel of lawmakers, state regulators and industry representatives was called by Rep. Don Aldridge, R-Lake Havasu City, to discuss septic-tank regulation.

In an unsigned June letter to the then director of the state Department of Environmental Quality, Ed Fox, Aldridge said the hearings were prompted by a "totally unreasonable" DEQ response to the problems.

Aldridge said DEQ and the county

health department had planned to ban a certain type of tank and by doing so would put two manufacturers out of business.

He said the ban also would cripple the local housing industry.

Aldridge said that the DEQ ban on the leak-prone tanks, which had been scheduled to take effect Aug. 20, was a "slap in the face" because it would go into force before he could conduct public hearings.

"To arbitrarily set August 20 as the date, with all the other complications, and throwing it in my face when I've agreed to hold hearings just amazes me," he wrote.

Performance End Result?

- 10 years later...
- In-field testing written into code
- Effective November 12, 2005, R18-9-A314(5)(d):

"The septic tank is tested for watertightness after installation by the water test described in subsections (5)(d)(i) and (5)(d)(ii) and repaired or replaced, if necessary."

Learning from Food Safety History

Event that forever changed food safety

 9993

Jack In The Box Outbreak

- E. coli 0157:H7
- Over 600 people sickened
- 4 were killed
- 73 restaurants in western states

Do We Have An Outbreak?

Lake Powell

Lake Mead

Almaden Reservoir near San Jose

What is HACCP?

HACCP Origins

 Pillsbury developed for NASA in 1960s NASA imposed strict microbiological requirements

Satire Warning

- The HACCP Team was assembled...
- The best & brightest minds were involved...`

•PhD

Professional Head Dude

•MD

Mega Dude

•JD

Jane Doe

•PE

Professional Ego

- The team wasn't coming together...
- Problems ensued...
- Something was missing...

•RS

Rocket Scientist

HACCP Today

- 7 principles
- Incorporated into regulations
- Implemented by Retail Food Establishments (e.g. restaurants)

HACCP Principles

- Principle 1: Conduct a hazard (risk) analysis.
- Principle 2: Determine the critical control points.
- Principle 3: Establish critical limits.
- Principle 4: Establish monitoring procedures.

HACCP Principles, cont'd

- Principle 5: Establish corrective actions.
- Principle 6: Establish verification procedures.
- Principle 7: Establish recordkeeping & documentation procedures.

Potential Food Hazards

- Biological
 - Bacteria, Viruses, Parasites
- Chemical
 - Cleaners, sanitizers, lubricants, pesticides
- Physical

- Foreign objects like glass, wood, metal

Biological Hazards

- Pathogen growth factors
 Temperature
 - Time
 - Water Activity (Moisture)
 - pH
 - Atmosphere (Oxygen)

HACCP for Onsite?

- HACCP benefits lead to improved...
 Understanding of risks & risk management
 - Public health & environmental protection
 - Regulatory compliance
 - Design & operation of systems

HACCP for Onsite?

		Severity of Consequences				
Risk Factor Matrix:		Insignificant (No impact / not detectable)	Minor (Customer Complaint)	Moderate (Impact on Customer Charter)	Major (Impact on Operating License)	Catastrophic (Public Health Risk)
Likelihood	Almost Certain (Once a day)	5	10	15	20	25
	Likely (Once a week)	4	8	12	16	20
	Moderate (Once a month)	3	6	9	12	15
	Unlikely (Once a year)	2	4	6	8	10
Like	Rare (Once every 5 years)	1	2	3	4	5

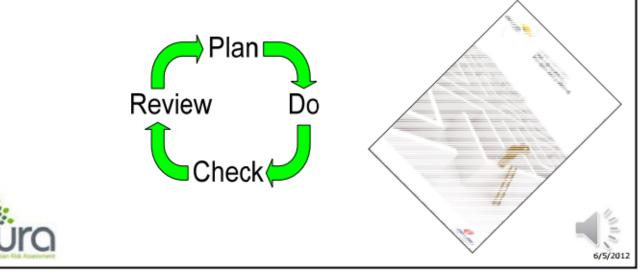

Source: Standards Australia/Standards New Zealand (1999)

Figure 3. Example Risk Factor Matrix

HACCP for Onsite?

Risk Management Systems

- HACCP Food & beverage safety & quality
- HAZOP Plant operation
- CHAIR Plant layout/operability, safety
- AZ/NZS 4360 Risk management

Potential Hazards from Onsite

Biological?

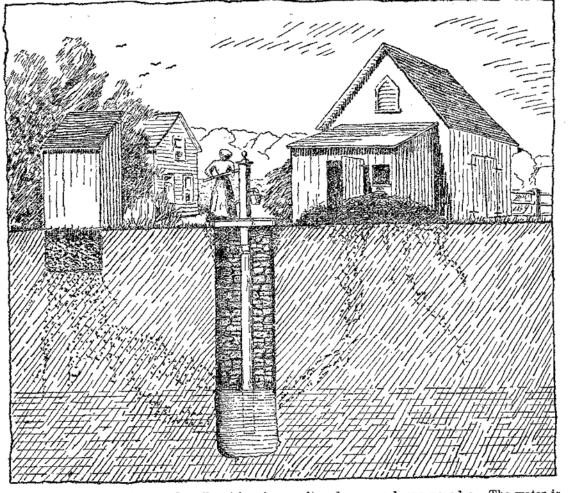
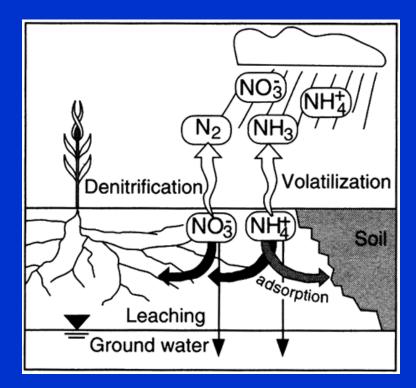
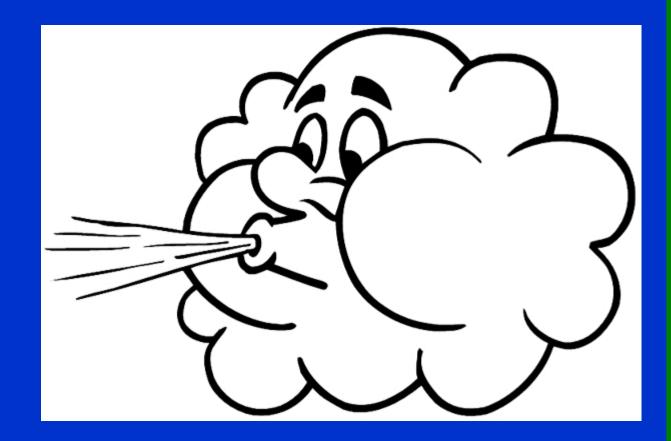



Fig. 1.--The shallow barnyard well, with privy vault and manure heaps near by. The water is likely to receive fluid from these at any time.

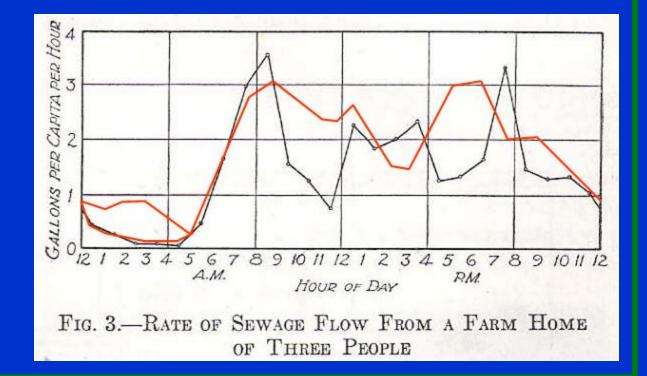
Potential Hazards from Onsite

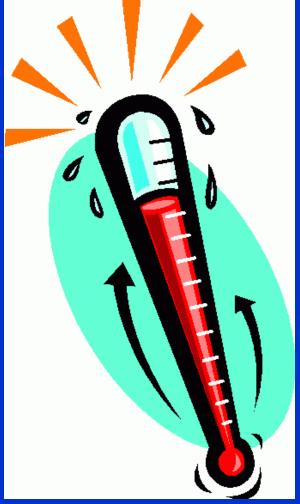
Chemical?

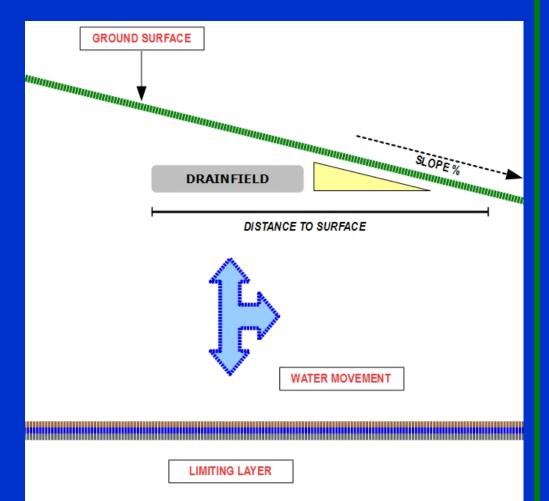
Potential Hazards from Onsite


Physical?

• Water?


• Air?


Potential Critical Control Points • Food/Energy/Nutrients (Cell Growth)?


Time?

Temperature?

Spatiality?

Potential Critical Limits

- Performance treatment levels?
 - Carbon: Should we use BOD₅ anymore?
 - Nitrogen
 - Phosphorus
 - Solids: Should we use TSS anymore?
 - Pathogens
 - Where's the water?

Potential Critical Limits

- Conventional septic tank & soil absorption system + MVS
 - Assumed to meet performance...
 - Carbon
 - Solids
 - Pathogens
 - Water absorption in soil

Onsite Treatment

- Biological
 - Metabolic activities of microorganisms
- Physical
 - Filtration, flotation, sedimentation
- Chemical

 Adsorption, cation exchange capacity, precipitation, pH adjustment

Onsite Treatment

Classify systems based on...
 Treatment processes
 Performance monitoring results

- States provide critical limitations for systems but do not "approve" systems or keep lists
- Overhaul state regulations to incorporate HACCP model
- Regulations provide flexibility for "building blocks"

- Considerations
 - Statistical analysis for 3rd party data
 - Develop risk model for data weighting
 - Test Center Data
 - Field Data
 - Risk matrix

- Local regulatory permitting authority evaluates based on:
 - HACCP plan: Designer submits
 - Statistical data analysis, where required
 - Process justification
 - Monitoring procedures

Flexible Regulations, cont'd

- Corrective actions logged & reported
- Local regulatory permitting authority to develop enforcement plan, like citations

 Monitor & document - Field test for ORP, DO, pH, TOC, COD, turbidity, alkalinity - Embedded system sensors are future

Why HACCP?: The Future

- Site Management of All Resources in Total = SMART
 - Capture & Reuse: no such thing as "wastewater"

→ RESOURCE WATER

- We want it!
 - Water & nutrients
- Closed loop systems

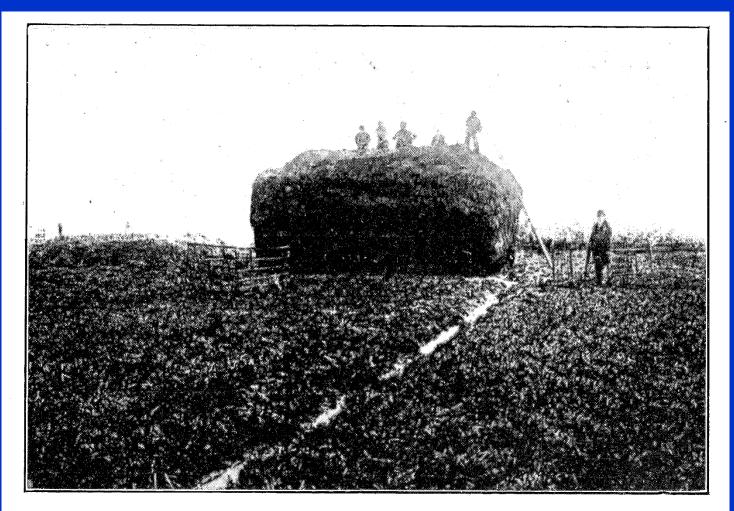


FIG. 60. Getting in the Hay Crop on an English Sewage Farm.

FIG. 62. Cornfield on the Pasadena Sewage Farm.

FIG. 63. Walnuts on the Pasadena Sewage Farm.

Impacts of Infrastructure **Independence** on Sustainability Less intrusive land development Reduced watershed impacts Resource capture & reuse Water, food & energy National & homeland security Individual/family or localized "buy-in", investment & accountability

Colin Bishop, REHS, RS colin.bishop@anuainternational.com 409.466.4644

Clean Water. Clean Air.

Harnessing nature in proven treatment solutions.