### SALCOR INC Ultraviolet Disinfection

"37 Years of Excellence"

P.O. Box 1090 Fallbrook, California 92088 (760) 731-0745 jscruver@aol.com



James E. Cruver, PhD President

#### Typical Wastewater Influent Concentration Ranges for Pathogenic and Indicator Organisms (Casson *et al.,* 1990; Rose, 1988; and U.S. EPA, 1979b)

| Organism                   | Minimum,<br>no./100 mL | Maximum,<br>no./100 mL |
|----------------------------|------------------------|------------------------|
| Total coliforms            | 1 000 000              |                        |
| Fecal coliforms            | 340 000                | 49 000 000             |
| Fecal streptococci         | 64 000                 | 4 500 000              |
| Virus                      | 0.5                    | 10 000                 |
| Cryptosporidium<br>oocysts | 85                     | 1 370                  |
| Giardia cysts              | 80                     | 320                    |

#### Secondary Effluent Ranges for Pathogenic and Indicator Organisms Before Disinfection (U.S. EPA, 1986)

| Organism                           | Minimum,<br>No./100 mL | Maximum,<br>No./100 mL |
|------------------------------------|------------------------|------------------------|
| Total coliforms                    | 45 000                 | 2 020 000              |
| Fecal coliforms                    | 11 000                 | 1 580 000              |
| Fecal<br>streptococci <sup>a</sup> | 2 000                  | 146 000                |
| Viruses                            | 0.05                   | 1 000                  |
| Salmonella sp.                     | 12                     | 570                    |

<sup>a</sup> Assuming removal efficiencies for fecal streptococci similar to the fecal coliform removal efficiencies.

### Survival Times of Pathogens in Soil and on Plant Surfaces (U.S. EPA, 1992)

|                              | Soil                             |                   | Plants              |                   |
|------------------------------|----------------------------------|-------------------|---------------------|-------------------|
| Pathogen                     | Absolute<br>maximum <sup>a</sup> | Common<br>maximum | Absolute<br>maximum | Common<br>maximum |
| Bacteria                     | 1 year                           | 2 months          | 6 months            | 1 month           |
| Viruses                      | 1 year                           | 3 months          | 2 months            | 1 month           |
| Protozoan cysts <sup>b</sup> | 10 days                          | 2 days            | 5 days              | 2 days            |
| Helminth ova                 | 7 years                          | 2 years           | 5 months            | 1 month           |

*a* Greater survival time is possible under unusual conditions such as consistently low temperatures or highly sheltered conditions (for example, heminth ova below the soil in fallow fields).

**b** Few, if any, data are available on the survival times of Giardia cysts and Cryptosporidium oocysts.

### Summary Comparison of UV, Chlorine & Ozone Disinfection for Small Wastewater Flows

| <u>EFFECT</u>                                                                     | <u>UV</u>  | CHLORINE (tablets) | <u>OZONE</u>            |
|-----------------------------------------------------------------------------------|------------|--------------------|-------------------------|
| рН                                                                                | No         | Yes                | Yes                     |
| Temperature                                                                       | No         | Yes                | Yes                     |
| Residual                                                                          | No         | Yes                | Dependent on pH & temp. |
| Contract time required                                                            | Very short | Very long          | Medium                  |
| Operator skill required                                                           | Little     | Little             | Moderate                |
| Equipment maintenance                                                             | Little     | Moderate           | High                    |
| Ammonia interference                                                              | No         | Yes                | Yes                     |
| Water chemistry change                                                            | No         | Yes                | Yes                     |
| Dissolved iron interference                                                       | Yes        | Yes                | Yes                     |
| Dissolved organic interference<br>(e.g. phenol, humic acid, lignin<br>sulfonates) | Yes        | Yes                | Yes                     |
| Capital cost                                                                      | Low        | Medium             | High                    |
| Operating cost                                                                    | Low        | High               | Medium                  |

# caution Super Bug!

### Superbug

Blamed for 60 percent of hospital infections in the US, caused 19,000 deaths out of 94,000 infections there in 2005

#### MRSA.

#### Methicillin-resistant Staphylococcus aureus

Origins

- Recognised first in hospitals around 1960
- Entered wider community in 1990s, where it came to be known as communityassociated MRSA or CA-MRSA
- Dramatic rise of the disease in community reported in recent years

#### Symptoms

- Minor skin problems
- Deep abscesses
- Can reach bone, joints, bloodstream, major organs
- Can lead to death

Source: Mayo Clinic/CDC

 Caused by Staphylococcus aureus bacteria (staph)

#### The problem

Bacteria has evolved to survive common antibiotics

> e.g. penicillin, oxacillin, methicillin, amoxicillin

Generally harmless to healthy adults unless enters body through cut or wound

#### **Risk environments**

- Hospitals
- Long-term care facilities
- Sporting facilities and equipment e.g. towel sharing in changing rooms, on the field in contact sports
- Crowded, unsanitary living conditions

281008 AFP

### **SUPERBUGS!!**

•Superbugs are on the rise in chlorinated wastewater effluent.

•The multidrug resistant gene NDM - 1 is able to give antibiotic resistance to E. Coli, Salmonella, and other bacteria.

•A Rice University study of Asian treatment plants indicated a minimal NDM - 1 reduction in spite of chlorine disinfection.

# • They recommended using a UV disinfection system.

•See the ACS Journal, *Environmental Science and Technology*, December, 2013.

# **Key Superbug Facts**

- 60,000 tons/year of antibiotics consumed to raise livestock and for human health
- **Bacteria are becoming resistant, e.g., MRSA**
- Antibiotic Resistant Genes, ARG transfer to human pathogens, ARB
- Wastewater plants are incubators for ARG and ARB

### **UV VS CHLORINE FOR SUPERBUGS**

- UV dose for inactivation is roughly the same as for normal and ARB
- ARG transfer can be nearly eliminated by a UV dose of 10 mj/cm<sup>2</sup>
- Chlorine doses of up to 40 mg-min per/liter prevented ARG transfer
- Chloramine stimulated the bacteria and further helped ARG transfer
- UV is clearly superior to chlorine for reducing the ARG problem

### Reference

- Are Antibiotic-resistant Bacteria a New Challenge to Disinfection? Mei-Ting Guo. <u>guomeiting@tongji.edu.cn</u> College of Environmental Science & Engineering, Tongji University, Shanghai, 200092 China
- IUVA News,/Vol. 17 No. 3, Winter 2015, Pgs.1617

Figure 5.5 Escherichia coli kill times versus residual concentration (from Clarke, N.A., et al. [1964] *Human* Viruses in Water: Source, Survival and Removability, Advances in Water Pollution Research. Vol. 2, Pergamon Press, London, U.K., 523



### Effect of Lower Chlorine dosage at Buffalo WWTP (Continued)

| Sample<br>Date | Chlorine<br>Residual | Fecal<br>Coliform | Flow Rate<br>(MGD) |
|----------------|----------------------|-------------------|--------------------|
|                | (mg/L)               | (MPN/100 ml)      |                    |
| 7/8/1996       | 0.78                 | 110               | 130                |
| 7/9/1996       | 1.22                 | 20                | 154 <- Reduction   |
| 7/15/1996      | 0.30                 | 12023             | 197                |
| 7/16/1996      | 0.92                 | 40                | 155                |
| 7/22/1996      | 0.58                 | 55                | 159                |
| 7/23/1996      | 0.42                 | 339               | 142                |
| 7/30/1996      | 0.39                 | 575               | 210                |
| 8/5/1996       | 0.41                 | 912               | 161                |
| 8/6/1996       | 0.35                 | 224               | 150                |
| 8/12/1996      | 0.48                 | 1660              | 152                |
| 8/13/1996      | 0.48                 | 1662              | 158                |
| 8/19/1996      | 0.76                 | 40                | 138                |
| 8/20/1996      | 0.88                 | 44                | 160                |

#### Effect of Lower Chlorine dosage at Buffalo WWTP

| Sample    | Chlorine | Fecal                 | Flow Rate |
|-----------|----------|-----------------------|-----------|
| Date      | Residual | Coliform              | (MGD)     |
|           | (mg/L)   | ( <b>MPN/100 ml</b> ) |           |
| 6/3/1996  | 0.80     | 692                   | 264       |
| 6/4/1996  | 0.92     | 63                    | 190       |
| 6/10/1996 | 1.00     | 24                    | 202       |
| 6/11/1996 | 0.95     | 50                    | 210       |
| 6/17/1996 | 1.15     | 47                    | 158       |
| 6/18/1996 | 1.00     | 76                    | 225       |
| 6/25/1996 | 1.10     | 28                    | 158       |
| 6/26/1996 | 0.95     | 33                    | 147       |
| 7/1/1996  | 1.08     | 32                    | 160       |
| 7/2/1996  | 0.82     | 33                    | 146       |
| 7/8/1996  | 0.78     | 110                   | 130       |



# UV Disinfection - Basic Facts

- > 240-260 nm UV light destroys microorganisms
- Dose is product of UV intensity and exposure time
- UV light transmission and suspended matter important variables
- Low-pressure mercury UV lamps are readily available at low cost
- Reliable delivery of UV dose to the fluid is the engineering design challenge



### **Electromagnetic Spectrum**



### UV Destruction Dosages (>99.9% Inhibition) For Important Microorganisms (mj/cm<sup>2</sup>) BACTERIA

| Clostridium tetani (Tetanus)                   | 22.0 |
|------------------------------------------------|------|
| Dysentery bacilli                              | 4.2  |
| Escherichia coli (indicator organism)          | 6.6  |
| Legionella pneumophila (Legionnaires' disease) | 2.76 |
| Mycobacterium tuberculosis                     | 10.0 |
| Pseudomones aeruginosa (slime former)          | 10.5 |
| Salmonella typhosa (Typhoid fever)             | 4.1  |
| Salmonella enteritides (Enteric fever)         | 7.6  |
| Staphylococcus aureus                          | 6.6  |
| Streptococcus lactis                           | 8.8  |



### UV Destruction Dosages (>99.9% Inhibition) For Important Microorganisms (mj/cm<sup>2</sup>) YEAST AND MOLD Bakers Yeast 8.8

| Saccharomyces sp. | 17.6 |
|-------------------|------|
|                   |      |

| Penicillium roqueforti | 26.4 |
|------------------------|------|
|------------------------|------|

Aspergillus niger 330

Mucor racemosus A & B35.2

Oospora lactis 11



### UV Destruction Dosages (>99.9% Inhibition) For Important Microorganisms (mj/cm<sup>2</sup>) OTHER

| <b>U</b>        | • • • |    |
|-----------------|-------|----|
|                 |       |    |
| Fungi (typical) |       | 45 |
|                 |       |    |

Chlorella vulgaris (algae)

Cryptosporidium (Oocysts) 20 – 30

#### Giardia lamblia (cysts) 20 – 30



22

### UV Destruction Dosages (>90% Inhibition) For Important Microorganisms (mj/cm<sup>2</sup>) VIRUS

Influenza 6.6 Influenza A 2.3 Bacteriophage MS 2 Polio Type I 23.7 6.0 Coxsachie A2 4.8 **Papilloma Virus** 9.8 Ebola (Zaire) Hepatitis C 23.32.3 **Mumps** Adeno Virus Type III 4.5 4.7 Norwalk Herpes Virus Type 4 5.6 5.3



# Dose requirements needed for inactivation of viruses by UV light exposure (mj/cm<sup>2</sup>)

| Virus                    | 90.0% | 99.0% | 99.9% | 99.99% |
|--------------------------|-------|-------|-------|--------|
| Echovirus 1              | 8     | 16.5  | 25    | 33     |
| Echovirus 2              | 7     | 14    | 20.5  | 28     |
| <b>Coxsackievirus B5</b> | 9.5   | 18    | 27    | 36     |
| Coxsackievirus B3        | 8     | 16    | 24.5  | 32.5   |
| Poliovirus 1             | 8     | 15.5  | 23    | 31     |
| Adenovirus type 32       | 40    | 78    | 119   | 160    |

From: Appl Environ Microbiol. 2002 October; 68(10): 5167-5169. Doi: 10. 1128/AEM.68. 10.5167-5169.2002



### Typical Ultraviolet Transmission Data On Water and Wastewater

| Water Type                                                                       | Percent<br>Transmission<br>of 253.7 nm<br>UV per cm | Absorption<br>Coefficient (253.7<br>nm UV) (cm <sup>-1</sup> ) |
|----------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|
| Distilled or High Purity Water                                                   | 99                                                  | 0.01                                                           |
| High Purity Drinking Water (no ferric iron or absorbing organics)                | 95                                                  | 0.05                                                           |
| Poor Quality Drinking Water (<0.3 ppm iron, slight amount of absorbing organics) | 82                                                  | 0.2                                                            |
| Filtered Secondary Effluent (<10 SS, <10 BOD)                                    | 71                                                  | 0.35                                                           |
| <b>Unfiltered Secondary Effluent (&lt;30 SS, &lt;30 BOD)</b>                     | 65                                                  | 0.43                                                           |
| Lagoon Effluent (<100 SS, < 30 BOD)                                              | 61                                                  | 0.5                                                            |
| Water containing 10 ppm Humic Acid                                               | 56                                                  | 0.58                                                           |
| Water containing 10 ppm Ferric Iron                                              | 25                                                  | 1.4                                                            |











### **Design Features**

- Easy Installation Ground or Pump Tank
- Cost Efficient 2 year "Long Life" UV Lamp, Uses Less Than 30 Watts of Power
- Gravity Flow to 6 GPM
- UV Resistant Materials
- UV Sub Assembly Easily Removed
- Teflon<sup>®</sup> Film Resists Fouling
- Underground "<u>Floodproof</u>" UL and cUL Listed Wastewater Disinfection UV Unit
- Power Surge and Electrical Noise Suppression



### **DESIGN PARAMETERS**

- •Maximum flow rate: 3 GPM for 30:30 effluent, 6 GPM for 10:10 effluent.
- •Fecal coliform reduction at lamp end-of-life (2 years) greater than 99.9%.
- •Inlet and outlet pipe is 4-inch schedule 40 ABS.
- •Pressure drop is less than 0.5 inches of water at maximum flow rate.
- Power use is 30 Watts. Energy use is 0.7.2 kW/hr/day, assuming continuous operation.
  UV lamp is low-pressure mercury, 90% of output is at 253.7 nanometers.



### **DESIGN PARAMETERS**, *continued*

- Minimum arc length is 30 inches, and the UV intensity is greater than 190 µW/cm<sup>2</sup> at 1 meter
  The unit and the "long life lamp" are warranted for two years.
- •UV dose is greater than 55 mj/cm<sup>2</sup> (55,000 μW-seconds/cm<sup>2</sup>).
- •UV lamp ballast is 90% efficient, high frequency operation (50 kHz) with thermal link protection.
  •Input voltage is 120 VAC at 50 or 60 Hz. Input current is up to 0.5 Amps.





#### UV Output Versus Time For Long-Life And Standard UV Lamps At 253.7 nm Wavelength



### Model 3G

- NEMA 6P
- Flood Proof
- UL Certified
- Gravity Flow
- 6 GPM (9k GPD)
- <30 Watts



## NEMA 6P Junction Box Passed a 30-Day UL Submergence Test. Two SALCOR Model 3G Units Operating in a Water Tank.





### **2 Units in Series**







### **2 Units in Parallel**





### 4 Unit Series & Parallel







### WASHINGTON STATE TESTING

- Advanced Treatment Unit & SALCOR UV
- NSF Standard 40 & WA State Fecal Coliform Reduction Protocol
- Duration 26 weeks
- All Twenty-one Completed Successfully, And One is in Progress.
- 3G UV Effluent Fecal Coliform Counts Ranged From 2 to 35 Per 100 ML (Geometric Mean)
- Demonstrates That the 3G UV Unit Operates Reliably Without Maintenance for 6+ Months



### NSF / Washington Protocol Tests with 21 Treatment Systems:

- Aero Tech
- •AK Industries Hydro Action
- •ANUA (Bord na Mona)
- •Aqua Klear
- •Bio Microbics Microfast 0.5
- •Clearstream
- •Consolidated Treatment Enviro-Guard .75
  - **Multiflo**
  - Nyadic



### **NSF / Washington Protocol Tests**

- •Delta Whitewater DF-60
- •Delta Whitewater Ecopod
- •Ecological Tanks Aqua Safe
- •Enviro Flo
- •Fuji Clean
- Hoot Aerobics
- •Jet Inc
- Lowridge Onsite Technologies
- •Norweco Singulair
- •Orenco AX 20N
- •Quanics ATS-CSAT-8-AC-C500
- •Solar Air



### WASHINGTON STATE TEST RESULTS SUMMARY

| Treatment Type         | Geometric<br>Mean Fecal<br>Coliform/100 ml |
|------------------------|--------------------------------------------|
| Suspended Growth       | 18 – 33                                    |
| Fixed/Suspended Growth | 26 – 56                                    |
| Fixed Growth – Textile | 1.7                                        |
| Fixed Growth – Peat    | 2.1                                        |
| Fixed Growth – Foam    | 16                                         |









### Easy Installation and Reliable Operation

- Teflon® Film Resists Fouling
- Alarm Light and Contacts for a Remote Alarm Provide Monitoring of Proper Performance of Unit

### **Convenient** Maintenance

 Accessible Divider Sub-Assembly and Lamp Easily Removed for Yearly Maintenance

#### Homeowner Satisfaction

- •No Handling of Caustic Chemicals
- Assures Highest "Kill" Rate Of Dangerous Pathogens (Bacteria, Viruses, and Parasites)
- Two-Year Warranty for Unit and UV Lamp





### **Salcor Company History**

- Founded in 1978
- Specializes in ultraviolet technologies for disinfection of wastewater and toxic chemical destruction
- FDA-approved system for processing food products (juices)



### **Salcor Company History**

### Dr. James E. Cruver

- •Founder President Inventor
- •PhD in Chemical Engineering from the University of Washington.
- •Over 40 years of experience in water treatment including reverse osmosis, filtration, and disinfection.
- •Author of 70 technical papers and coauthor of a graduate level textbook on water treatment.



THANK YOU FOR ATTENDING MY PRESENTATION

# Salued Jisinfection

Made in the USA

c(UL)us

LISTED

Dr. James E. Cruver SALCOR Inc. PO Box 1090, Fallbrook, CA 92088 (760) 731-0745, Fax: (760) 731-2405 iscruver@aol.com