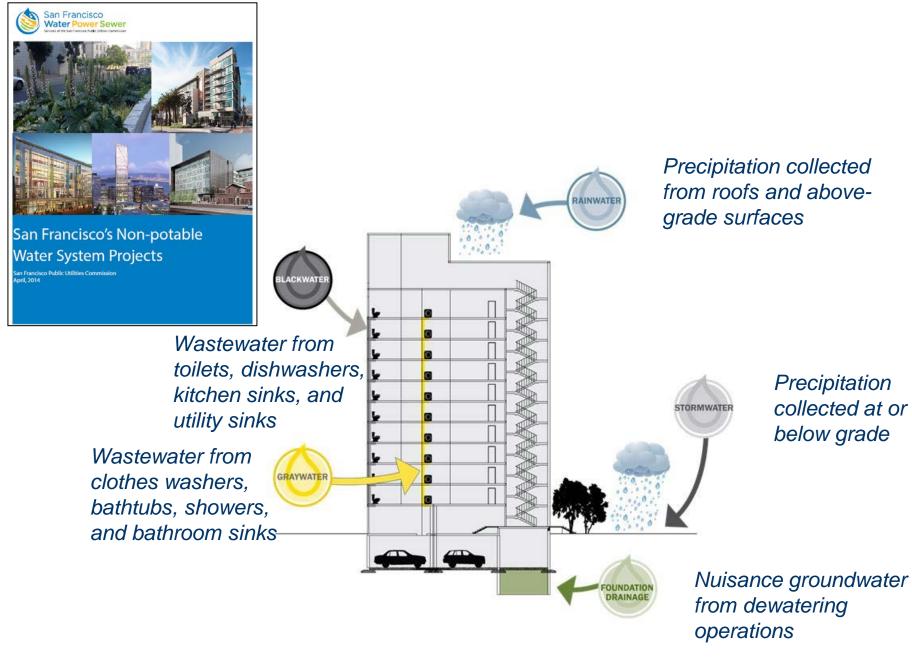
Pathogen Treatment Guidance and Monitoring Approaches for On-Site Non-Potable Water

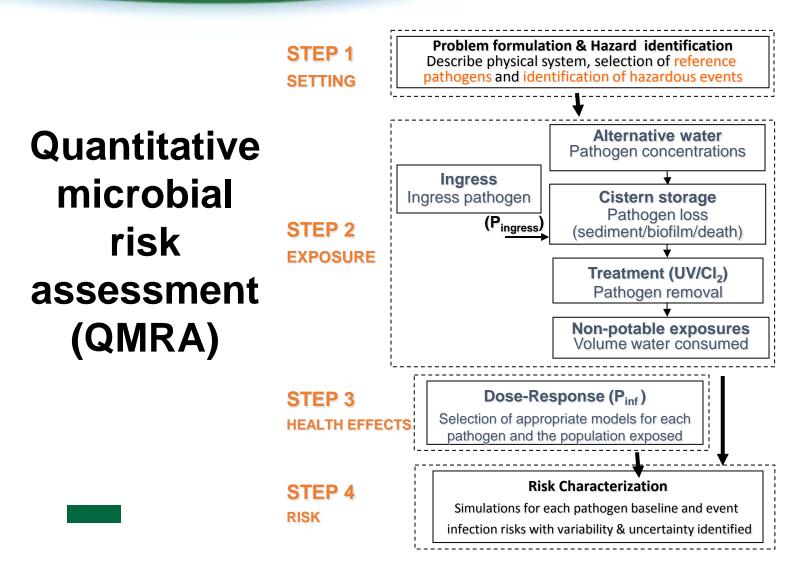

Jay Garland¹, Mary Schoen², Brian Zimmerman¹, Scott Keely¹, Nichole Brinkman¹, Susan De Long³, Sybil Sharvelle³, Michael Jahne¹

¹USEPA Office of Research & Development ²Soller Environmental ³Colorado State University

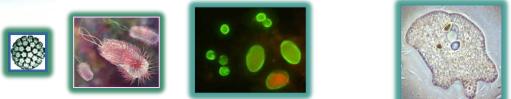
Overview States to Book the Protection of the Pr

- Context
 - Increasing interest in fit for purpose water reuse
 - Limits of conventional indicator organism approaches
- Approach
 - Quantitative Microbial Risk Assessment (QMRA) to define treatment requirements
 - Performance monitoring approaches
 - Rationale for moving away from traditional microbiological indicators
 - On-line, non-biological surrogates linked to treatment requirements
 - Alternative microbiological targets (infrastructure microbiome?) U.S. Environmental Protection Agency

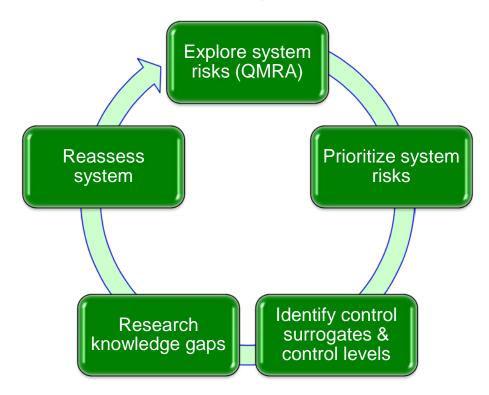
Traditional Indicators Are Not Predictive of Pathogen Levels in Alternative Waters


• Graywater

- O'Toole et al. (2012)
 - A total of 185 greywater samples (laundry, bath) from 93 households in Australia
 - Analyzed for fecal indicator E. coli, pathogenic E. coli, and key viral pathogens (enterovirus, norovirus, rotavirus)
 - No association between the presence of indicators and the presence of pathogens
 - Norovirus was detected when the fecal indicator bacteria was not (7% of samples)
 - Not surprising given the fact that pathogen shedding is highly variable
- Rainwater
 - Ahmed et al (2012)
 - Event driven, non-human fecal sources –lead to highly variable pathogens detections
 - Simmon et al. (2008)
 - Legionella outbreak from rainwater drinking water system
 - Importance of "environmental" pathogens (rather than host associated)
 - To add to the complexity, source of the Legionella was linked to aerosols from a pressure washer at a nearby marina



So Need to Start By Defining the Necessary Treatment To Meet Acceptable Risk



QMRA – Analytic Framework

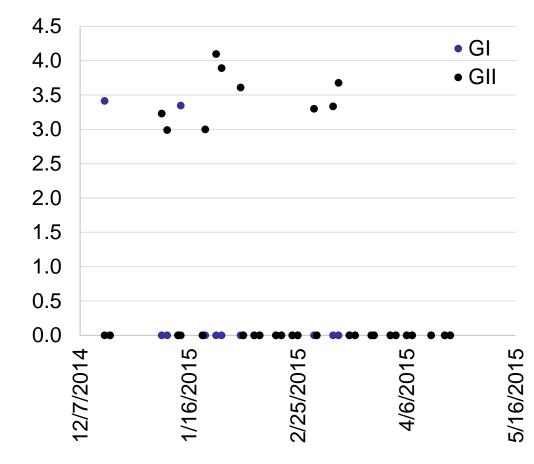
QMRA of Non-Potable Reuse of Alternative Water Sources: A Literature Review

- Focused on on-site domestic and commercial systems (not centralized systems)
- Review publications that a) recommended technology performance standards or b) estimated health risks from microbial exposures
- Evaluated graywater, rainwater, stormwater, foundation drainage, and blackwater (using SF PUC definitions)
- Focused on non-potable uses, but not agricultural production

\\/ator	Scale ^a M		Mis-			Log Reductions												
Water	S	ΜL	use	Event	vent Pathogen ^{c,d}	<1	1	2	3	4	5	6	7	8	9	10	>10	Ref
Wastewater	X NA ^b			V, Cj, C								direct	t potabl	e (dp)		1		
		Х	NA		N,Cj												dp	25
	X X			R					agricu	agriculture						24		
	X			R, Cj, C					agriculture							15		
	X			R, Cj, C					home garden						15			
	X			R <i>,</i> Cj, C					firefighting						15			
	X			R, Cj, C					home use						15			
		Х	Х		R			agric	ulture									13
		Х			N,R,A,Cj,C	toilet	flush a	and irrig	ation									16
Greywater		Х		Х	N,R,A,Cj,C		•	toilet flu	sh and	irrigatior	า							16
		NA			R,Cj, C	munio	cipal											7
Stormwater	NA				R,Cj, C	in/outdoor home										7		
	NA				R,Cj, C	firefighting										7		
	NA			R,Cj, C		agriculture										7		
	NA			R,Cj, C	non-food crops											7		
	NA			R,Cj, C	irrigation										29			
Rainwater		NA			Cj	all uses ^e												7
a. Small (S) is	sin	gle h	ouseh	old, N	1edium (M) is	multi-h	ome sy	stems,	arge (L) is comn	nunity-\	wide						
b. NA is not a	ppl	icable	e															
c. V is enteric	viru	us, C	is Cry	ptospo	oridium, R is I	Rotavirus	5, N is I	Noroviru	s, A is A	denoviru	us. Cj is	Campyl	obactei	r jejuni				
d. Pathogens	orc	lered	from	highe	st to lowest r	equired	log red	uction										
e. municipal,	ind	oor a	nd ou	itdoor,	, firefighting,	agricultu	ire, noi	n-food c	rops									

Conclusions of QMRA Literature Review

- Each water and use combination requires a unique pathogen reduction so that the water can be considered "safe"
- There are reuse applications for which the human health risk has not been characterized
 - On-site blackwater or mixed wastewater, Foundation drainage reuse, etc.
- Adoption of previously calculated pathogen reductions for on-site systems requires careful consideration so that waters can be considered safe
 - Differences in pathogen densities and occurrence between centralized and on-site systems
 - Need to account for sporadic nature of pathogen occurrences and treatment performance variation
- Review has been published (Schoen and Garland 2015, Microbial Risk Analysis)



Current work on-going to refine models/estimates

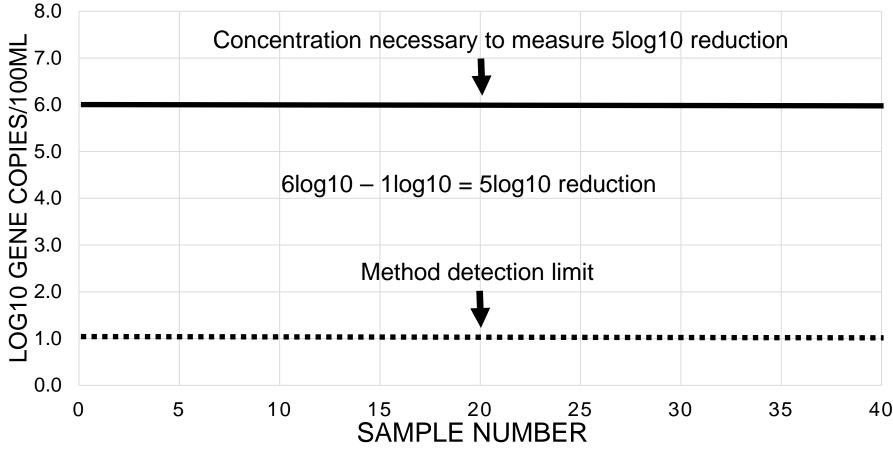
- Characterize pathogen density in on-site collection systems
 - Distinction from municipal wastewater/failure of indicator paradigm
 - Direct monitoring data needed
- Incorporate pathogen intermittency
 - Important for small-scale systems where pathogens may not be routinely present
 - Implications for determination of annual risk
- Improve exposure models
 - Are people really exposed to 0.01 mL from toilet flushing? (NRMMC 2006)
 - Need realistic science-based assumptions, but also need to consider failure/accidental exposure
- Independent Advisory Panel: Technical Requirements for Public Health Standards for Onsite Water Systems
 - Working with the expert advisory group so that this information, contained in separate publication(s), will be referenced in the framework document

Greywater Norovirus at EPA-AWBERC Facility

Norovirus Concentration (log₁₀copies/L)

- 8-story, 800-person "office building"
- 33 greywater samples collected from sinks, water fountains, and showers (combined)
- Detection Rate
 - GI 6.1%
 - GII 27.3%
- Average Concentration
 - GI 3.38 log copies/L
 - GII 3.47 log copies/L

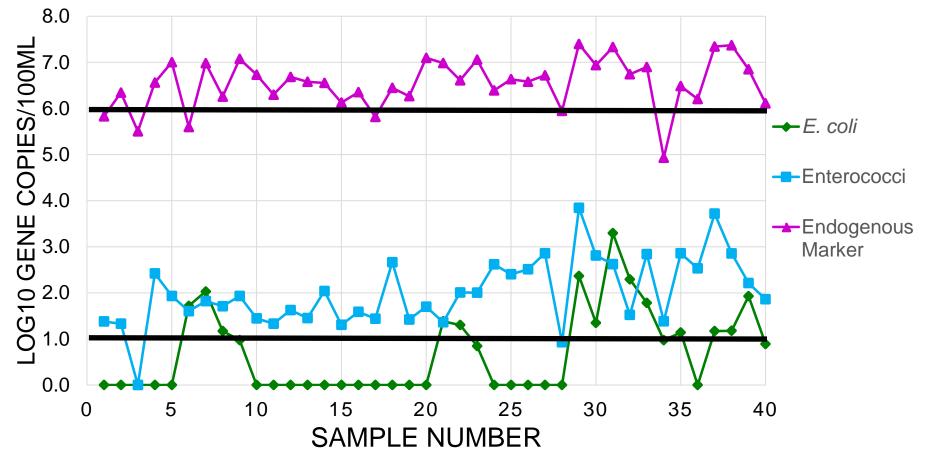
How do we quickly and effectively monitor the treatment performance of a system?


What About Monitoring?

- Process indicator
 - Demonstrates efficacy of a process (treatment)
- Could use common water quality parameters
 - Preferably using real or near real-time sensors
 - Need to be validated as an accurate predictor of treatment performance
- But what about biologically based process indicators?
 - Consistently present in sufficiently high numbers to measure necessary dynamic range required by log removal estimates

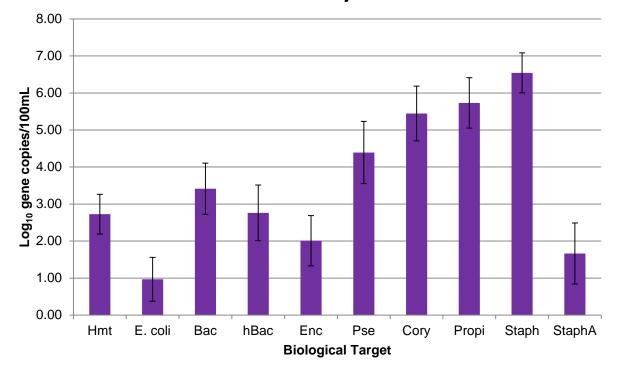
MEASURING A 5LOG10 REDUCTION

Indicator Organisms (IO) in Graywater


Indicator	Graywater log ₁₀ /100mL	Wastewater log ₁₀ /100mL
E. coli	0 - 6	4 - 6
Enterococci	0 - 4	4 - 6
Sulfite-reducing clostridia	0 - 3	3 - 6
Coliphage (Somatic and F-RNA)	0 - 3	6 - 7

From: Ottosson (2003), Gilboa (2008), Winward (2008)

- No correlation between *E. coli* and gastroenteritis or *E. coli* and Norovirus occurrence (O'Toole, 2012)
- IO can grow ~1-2log₁₀ in graywater (Ottosson, 2003)



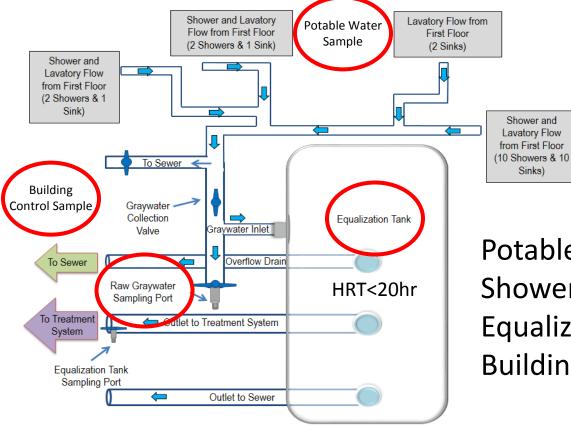
INDICATOR BACTERIA IN GRAYWATER

Quantification of Select Targets In Laundry Water

Mean \log_{10} copies \pm SD of qPCR targets (Hmt = HmtDNA, Bac = *Bacteroides* spp., hBac = human-specific *Bacteroides*, Enc = *Enterococcus* spp., Pse = *Pseudomonas* spp., Cory = *Corynebacterium*, Propi = *Propionibacterium*, Staph = *Staphylococcus* spp., StaphA = *S. aureus*) in laundry graywater. Adenovirus not found in any sample

Log10 Reduction In Graywater Summary

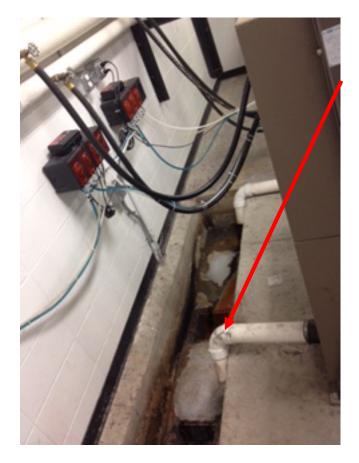
- Enterococci and *E. coli* levels not sufficiently high to quantify 5log10 reduction
 - Can only measure average of 1-2log10 reduction
 - Measure 0log10 reduction 30% of the time
- Endogenous marker can measure up to 6.4log10 reduction
 - Can measure ≥5log10 reduction 85% of the time
 - Can measure average of 5.5log10 reduction



In Search of Endogenous Bacterial Markers in Graywater

- 52 graywater samples from two distinct graywater sources
 - Colorado State University (CSU) system (Ft. Collins, CO)
 - Dormitory including 14 residence halls
 - 14 showers and 14 sinks (28 person capacity)
 - o Composited in 946L equalization tank
 - University of Cincinnati (UC) athletic department's commercial washing machine (Cincinnati, OH)
 Launder ~10-30 garments per wash
- Analyzed by pyrosequencing 16S rRNA gene
 - Classification to genus level of characterized bacteria

CSU Recycling System Schematic



Potable Water (PW): n=1 Shower/Handwash (SH): n=18 Equalization Tank (ET): n=6 Building Control (BC): n=3

Sinks)

UC Commercial Washer

Laundry (LA): n=24

Conclusions from Bacterial Metagenomics of Graywater

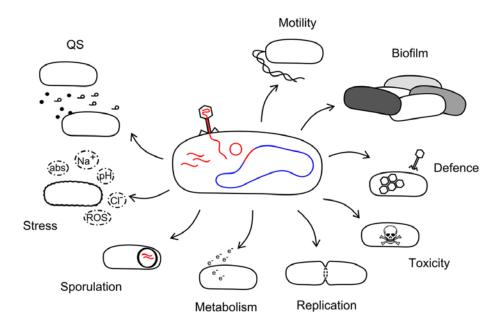
- Infrastructure-associated bacteria are the most abundant bacteria in graywater recycling systems
 - Suspended/attached growth or persistence of organisms in plumbing drain lines/equalization tank
- Skin-associated bacteria are the most abundant bacteria shed from humans
 - Most abundant in laundry
 - Present but variable in graywater recycling system


Sequence Statistics

- Over 1.8 million raw reads generated
 - Average over 35,000 raw reads per sample

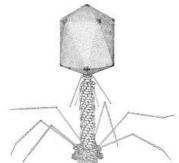
Sample	Number of	Average Number of	Total Number of
Туре	Samples	Genera Detected	Genera Detected
SH	18	86	191
ET	6	53	90
BC	3	82	107
PW	1	37	37
LA	24	105	295

Log₁₀-scale Heat Map of Genera Detected

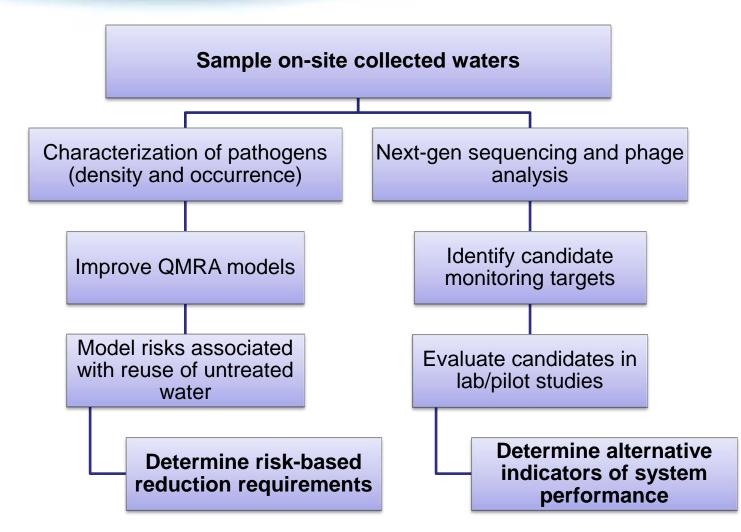


02/08/2016

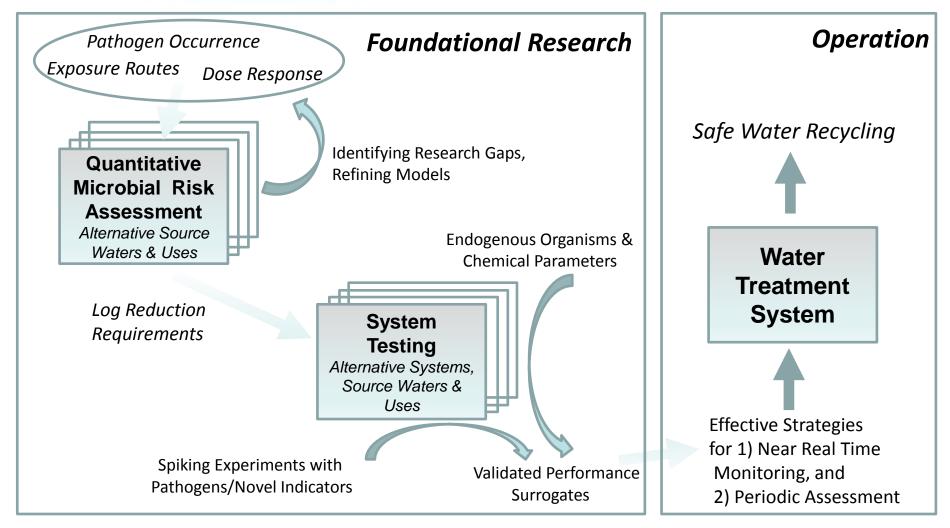
U.S. Environmental Protection Agency


Are Bacteriophage Better Targets?

- Viruses that infect bacteria
- Abundant 10x more than bacteria
- Relevant biologically similar to viral pathogens
- Challenges for Characterizing "Phageome"
 - No universal gene
 - Need to remove prokaryotes, archaea and eukaryotes


From Hargreaves et al. 2014. Bacteriophage 4:e29866, doi: 10.4161/bact.29866

Working With Partners



So....

Putting this all together

