## New Opportunities in Distributed, Non-Potable Water Use

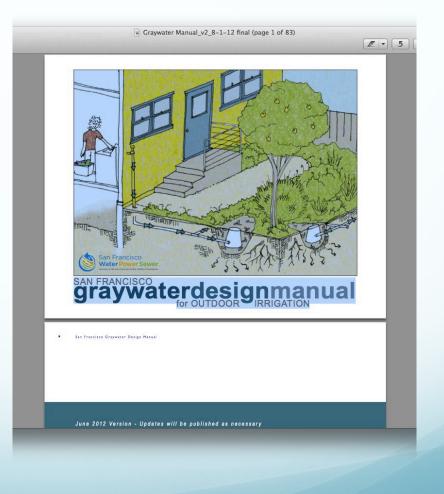
#### Presentation to 2016 SW Onsite Wastewater Conference

A. R. Rubin, Professor Emeritus North Carolina State University

## **Direct or Indirect Re-Use?**



## Outline


- Opportunities and challenges
- Technology performance
- Management requirements

## Wastewater/Graywater

- Three systems certified to 350, others in process
- Wastewater and graywater
- NSF criteria generally accepted in state or province health and building codes
- ICC Green Code

# Graywater

- Laundry, bath, hand wash sink, but NOT kitchen sink (dishwasher ok if rinse cycle only)
- Thermotolerant coliform (not fecal or total)



## Next step - SW/HRW

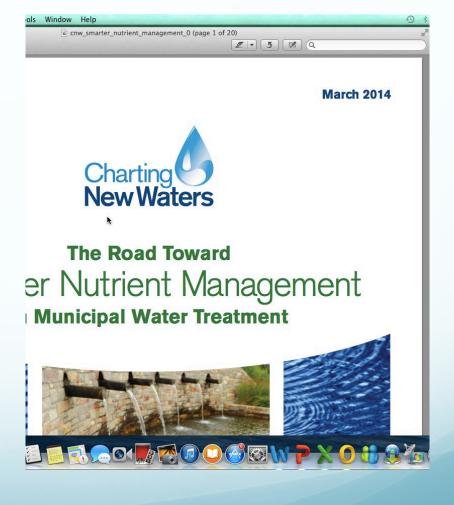
- Stormwater and harvested rainwater
  - CSA Draft HR standard
  - ARCSA standard for small system
- Significant differences in quality
- Volume is climate dependent
- SW significant NPS
  - 303 d
  - 305b

#### 350 Calls

- Discussions indicate confusion, but standard proposed for NON-POTABLE use
- Several calls, still some confusion
- Some manufacturers strongly supportive of a standard
- Product to be tested against standard using challenge

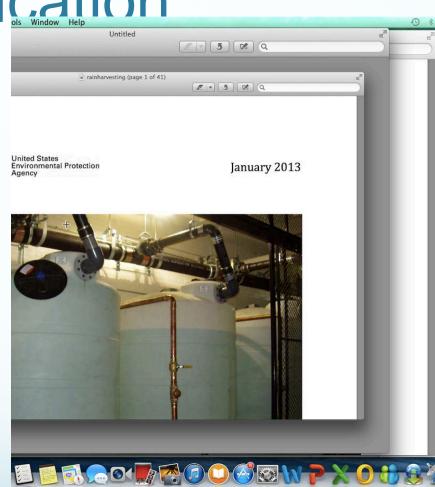
## Rainwater and stormwater

- May not be as clean as you think
- Reactive
- Impact on metal pipe?
- Impact on plumbing fixtures
  - Appearance
  - Aesthetic


Table 1, Typical Residential, Commercial and Industrial Harvested Rainwater and Paved Lot Stormwater Quality

|  |                   | Residential<br>rainwater1 | Commercial rainwater <sub>1</sub> | Industrial<br>rainwater <sub>1</sub> | Paved Lot Stormwater <sub>2</sub> |
|--|-------------------|---------------------------|-----------------------------------|--------------------------------------|-----------------------------------|
|  | TSS (mg/l)        | 27                        | 15                                | 41                                   | 56                                |
|  | Coliform C/100ml) | 290                       | 1117                              | 144                                  | 41976                             |
|  | Zn (mg/l)         | 149                       | 330                               | 1155                                 | 1.2                               |

1. Bannerman, 1993; 2. Pitt, 2004


## **Rainwater Harvest**

- Emerging interest
- Criteria and standards lacking
- NSF 350 listed as option



## EPA Publication

- EPA-841-R-13\_002
- NO NATIONAL STANDARDS
- Rainwater harvest described as SW pollutant reduction
- NSF 350 described on pg. 16

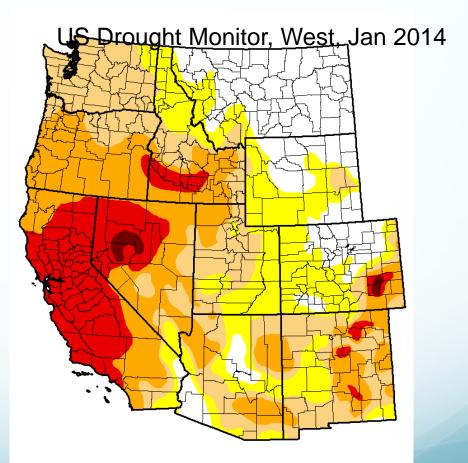


# **Regulatory Issues and Reuse**

- USEPA
  - Consistent with PL 92-500
  - Guidelines for Land Application and Reuse
- State
  - Inconsistent policy between states
  - Regulation for Wastewater Reclamation and Reuse
  - Recommendations and requirements in strategy
  - ENFORCEMENT

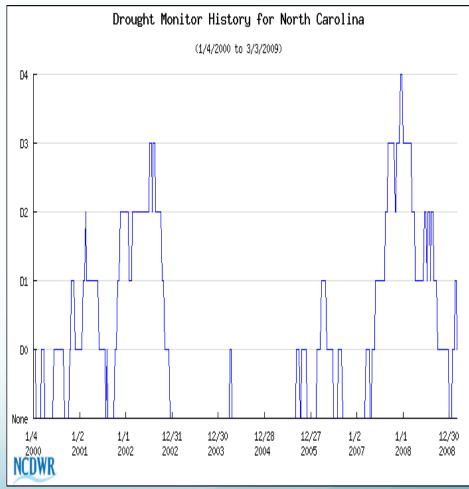
### **State Policies**

- North Carolina Aggressive reuse policy allows some potable reuse
  - Reuse rules for irrigation, etc
  - SB 163 "reclaimed water as source water"
- Virginia, Aggressive Code
- New York, Building Code Efforts
- Arizona- Aggressive policies to address shortages
- California Governor signaled aggressive efforts to facilitate reuse
  - San Francisco reuse efforts and manual
  - Others...

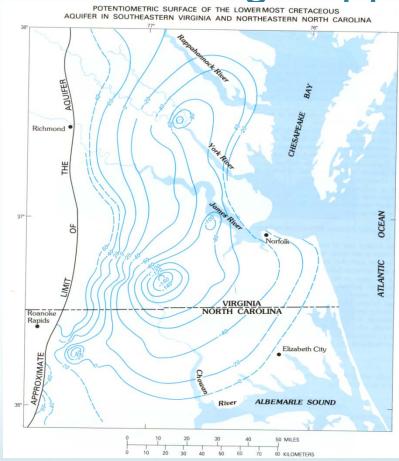

## **Reuse Guidelines**

- Guidelines because NO mandate
- Variety of end uses
- Recent interest in direct and indirect potable use
- This document is available via the internet:
- http://www.waterreuseguidelines.
  org




## Water Scarcity – One Driver

- National drought data
- Frequent updates
- Forecast
- Water management tool




# **Drought History**

- Significant stress on water systems through decade
- Increasing population pressures expected



#### Groundwater Potentiometric Surface Data – Dwindling Supplies



#### Reuse and Non-Potable Use Implications

- Environmental and Public Health Consequences
  - Discharge elimination
  - Reliable supply of high quality water-potable demand management
  - LEED
  - Important tool, provided health concerns addressed

- Resource Allocation
  Consequences
  - Extends water supplies
  - Reduces energy demands on potable system
  - Saves Dollars
  - Important tool to optimize resource management provided sustainability addressed

## Health Concerns

- Public Health Concerns drive reuse efforts
- Microorganism levels reduced to detection
- Advanced treatment and Multi-barrier disinfection processes where exposure high
  - Chemical (chlorine, ultraviolet light, Peracetic acid)
  - Barriers (microfiltration)

## Incidence of problems

- Primary effluent irrigated lands in Mexico and Israel health issued documented
- Secondary effluent no documented incidence of disease
- Advanced Treatment No documented incidence of disease

#### Sources of Non-Potable Water

- Wastewater and graywater
- Harvested rainwater
- Stormwater
- Drainage water
- Water plant backwash
- Dry weather runoff (irrigation)



## Rainwater and stormwater

- May not be as clean as you think
- Reactive
- Impact on metal pipe?
- Impact on plumbing fixtures
  - Appearance
  - Aesthetic

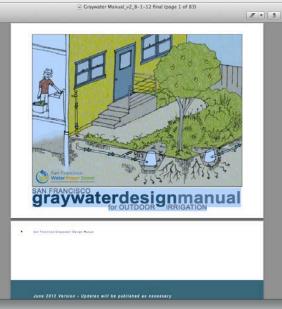
Table 1, Typical Residential, Commercial and Industrial Harvested Rainwater and Paved Lot Stormwater Quality

|  |                   | Residential<br>rainwater1 | Commercial rainwater <sub>1</sub> | Industrial<br>rainwater <sub>1</sub> | Paved Lot Stormwater <sub>2</sub> |
|--|-------------------|---------------------------|-----------------------------------|--------------------------------------|-----------------------------------|
|  | TSS (mg/l)        | 27                        | 15                                | 41                                   | 56                                |
|  | Coliform C/100ml) | 290                       | 1117                              | 144                                  | 41976                             |
|  | Zn (mg/l)         | 149                       | 330                               | 1155                                 | 1.2                               |

1. Bannerman, 1993; 2. Pitt, 2004

## No U.S. Standard

- CSA/ICC B 805 201X (May, 2015)
- Tiers for use
  - C1 irrigation
  - C2.1 and 2.2 limited indoor use
  - C3 indoor use
  - C4 culinary/potable uses (DW Standards apply)


## CSA

- Standard applied at end use
- Irrigation water requires 100 micron filtration

| Tier | Turbidity | HPC        | Cl   |
|------|-----------|------------|------|
| TC   |           | 350        |      |
| C2.1 | <2        | <5         | 0.05 |
| C2.2 | <2        | <5         | 0.05 |
| C3   | <2        | <5         | 0.05 |
| C4   | DW        | DW<br>(ND) | DW   |

## Graywater

- Bath, laundry, NO KITCHEN sink
- Indoor and outdoor use
- Addressed in NSF 350-1



#### Optimizing Current Reuse Practices

#### First Steps to Evaluate / Implement Reuse

- Reclaimed Water Demand Projections Initial Planning Period (Planning Horizon of 25 Years)
  - a. Irrigation Demands (Landscape, Lawns, Common Areas, etc...)
  - b. Industrial Demands (Chiller / Cooling Water Makeup, Boiler Feed, Washdown, etc...)
  - c. Indoor Demands (Toilet Flushing, Courtyards, Dual Plumbing, etc...)
  - d. Fire Protection
  - e. Other Uses (Aesthetics, Fountains, Ponds, etc.)
  - f. Continuous vs. Seasonal Operations Average Daily Flows & Pressures Peak Daily Flows & Pressures Daily Demand Curves Demand Projection Curves

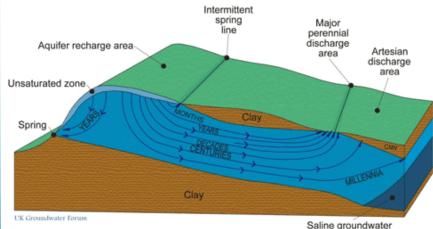
#### First Steps to Evaluate / Implement Reuse

#### II. Treatment Standards imposed by End Use

#### III. Capital Improvement Program - Sustainability

- a. Preliminary Project Cost Estimates
  - i. Treatment Alternatives
  - ii. Distribution System Alternatives
  - iii. Storage
- b. Reclaimed User Systems
- c. Five Year Capital Improvement Program

#### III. Public Education / Outreach Needs


- a. Work Sessions with Community Leaders
- b. General Public (Staff / Students) Education / Outreach
- c. End-User Training and Education

#### Planned Direct and Indirect Potable Reuse

(through surface supply and groundwater)

- Few National Examples (Clayton Co, GA; Water Factory 21, OCWD, CA), AZ
- Generally, no more than 25% indirect feed for direct reuse (treatment plant through wetland to water treatment plant)
- Indirect natural buffers surface or groundwater
  - Twelve month travel time between infiltration / withdrawal
  - Minimum 2,000 foot between infiltration / withdrawal





# Water Quality Concerns

- Intended Use of reclaimed or harvested water drives issue
- Risk Based Management
- Treatment Requirements
  - Constituents of concern (BOD, N, P, Na, coliform, virus)
  - Treatment and Disinfection
    - Microbiological
    - Organic
    - Nutrients and salts
    - turbidity

## Some Water Quality Rules/Standards

- 15 A NCAC 0 2U (reclaimed water)
- 18 Arizona Administrative Code 11 A3 (B)
  - Classes A+, A, B+, B, C
  - Type 1, 2 or 3 permit
- California Title 22 (reclaimed water from municipal sources)
- NSF 350 and 350-1 (Non-Potable water use)
- NO EPA STANDARDS for Non-Potable use
  - No congressional mandate
  - Guidelines only

## **Selected Standards**

| Jurisdiction | Turbidity | BOD                                   | TSS                    | Coliform | C.<br>perfringens | Coliphage |
|--------------|-----------|---------------------------------------|------------------------|----------|-------------------|-----------|
| CA           | 2         | NS (adv<br>oxidation)                 | NS (adv<br>filtration) | 2.2      |                   |           |
| FL           |           | 20                                    | 5                      | ND       |                   |           |
| NC           | 5         | 10                                    | 5                      | 14       | -3 log            | -4 log    |
| VA           | 5         | 10                                    | 5                      | 14       |                   |           |
| NYC          | 2         | 10                                    | 10                     | 2.2      |                   |           |
| AZ           | 2 (CI A)  | 2 <sup>nd</sup><br>Tmt/disin/<br>Filt | NS                     | 23       |                   | 33        |

## NSF/ANSI 350

- American National Standard
- Residential and commercial treatment systems
- Sources; graywater and combined wastewater
  - Graywater: laundry and bathing, excluding toilet and kitchen.
  - Combined: blackwater and graywater.
- Non-potable effluent uses
  - Indoor; toilet and urinal flushing.
  - Outdoor; surface and subsurface irrigation.



## NSF/ANSI 350

- Residential wastewater; Up to 1500 gpd
  - Laboratory testing with actual wastewater.
- Graywater; Up to 1500 gpd
  - Laboratory testing with synthetic wastewater; bathing, laundry, or both
  - Exception; commercial laundry water
- Systems exceeding 1500 gpd, and commercial laundry
  - Field evaluation using actual building wastewater.



## 350 and 350-1 Standards

#### 350

- Domestic wastewater and graywater used indoors
  - Chemical
  - Biological
  - Physical
  - Indoor uses and unrestricted outdoor use

#### 350-1

- Graywater
  - BOD and TSS
  - Outdoor use only
  - Buried/subsurface drip

#### NSF/ANSI 350 Effluent Criteria

#### Standards

| Paramete<br>r     | Class R                        | Class C                 |
|-------------------|--------------------------------|-------------------------|
| CBOD <sub>5</sub> | 10 mg/L (25)                   | 10 mg/L (25)            |
| TSS               | 10 mg/L (30)                   | 10 mg/L (30)            |
| Turbidity         | 5 NTU (10)                     | 2 NTU (5)               |
| E. coli           | 14 MPN/100<br>mL (240)         | 2.2 MPN/100 mL<br>(200) |
| рН                | 6.0 - 9.0                      | 6.0 - 9.0               |
|                   | 0.5 - 2.5 mg/L<br><b>nergy</b> | 0.5 - 2.5 mg/L          |

#### Use

- Indoor
  - Toilet flush
  - Laundry (?)
- Outdoor
  - Unrestricted irrigation
  - Pressure washing
  - De Minimis discharge

#### NYC Visionaire Tribeca Sites 23 & 24 Site 3 reen 19B Riverhouse 16/17 The Solaire Millennium Tower Site 18A Site 2A



- Decentralized reuse in highly urbanized area
- LEED Platinum
- Green roof filters and captures stormwater
- Wastewater and stormwater treated for reuse
  - Toilet flushing
  - Cooling tower supply
  - Irrigation of park
- Over 50% reduction in potable water consumption
- Almost 60% reduction in wastewater discharge to city

Reference – Battery Park City Authority Manhattan Borough, NYC, The Solare – Alliance Environmental, LLC

# Water reuse influencing the NYC skyline



# Wastewater/ Graywater

- Onsite reuse
- Challenge: adjacent to water supply
- The solution: onsite reuse system,
  - High quality treatment
  - Reduced nutrient discharge to GW



# **Design Parameters**

- Minimal land space available/required
- Lack of rules for reuse
  - Used NSF, DWQ or USEPA as a guide
- Modified design for small system
- SCADA

#### **Required Effluent Quality**



|        | Monthly<br>Average | Daily Max       | Results         |
|--------|--------------------|-----------------|-----------------|
| BOD5   | 10 mg/L            | 10 mg/L 15 mg/L |                 |
| TSS    | SS 5 mg/L 10 mg/L  |                 | <5              |
| NH3    | 4 mg/L             | 6 mg/L          | <2              |
| E-COLI | 3/100 mg/L         | 25/100 mg/L     | ND              |
| TURBID | n/a                | 10 NTU          | <1 (15 sec frq) |

# **Benefits of the System**

- Honor Donor's legacy and vision
- Reduce nutrient loading to Falls Lake watershed
- Reduce amount of water withdrawn from aquifer
- Provides educational opportunity



Cost?

#### Park

Indoor reuse and SAS Building Code approval MBR treatment/Pressure manifold/Chamber NO FIELD REDUCTION HQW achieved Award winner On-line turbidity monitor



# ICC and USGBC

- IgCC (Green Code, 2012)
  - Water efficiency provisions
  - Ch's 3, 7, and 9
- ICC (2015 Code)
- LEED Building
- LEED ND





#### LEED for New Construction and Major Renovation 2009 Project Scorecard

| Tes : No      |            |                                                                 |           |          |        |
|---------------|------------|-----------------------------------------------------------------|-----------|----------|--------|
|               | Wate       | er Efficiency                                                   |           | 10       | Points |
|               |            |                                                                 |           |          |        |
|               | Prereq 1   | Water Use Reduction, 20% Reduction                              |           | Required |        |
|               | Credit 1.1 | Water Efficient Landscaping, Reduce by 50%                      |           | 2        |        |
|               | Credit 1.2 | Water Efficient Landscaping, No Potable Use or No Irrigation    |           | 2        |        |
|               | Credit 2   | Innovative Wastewater Technologies                              |           | 2        |        |
|               | Credit 3.1 | Water Use Reduction, 30% Reduction                              |           | 2        |        |
|               | Credit 3.2 | Water Use Reduction, 40% Reduction                              |           | 2        |        |
|               | Proje      | ect Totals (Certification Estimates)                            |           | 110      | Points |
| Not Certified |            | Certified: 40-49 points Silver: 50-59 points Gold: 60-79 points | Platinum: | 80+ poin | ts     |



# IgCC – Ch 3: Jurisdiction

- Water Use Provisions
- Local Jurisdiction determines applicability for Municipal Reuse Systems (Table 302.1)
- Ref: ASHRE/USGBC/IES Standard 189.1 design of High Performance of Green Buildings

#### Ch 7: Water Resource Conservation, Quality and Efficiency

- 702 fixtures
  - 702.7: municipal reclaimed water; where available and required in 302.1 reclaimed water shall be supplied to:
    - Water closets
    - Water supplied urinals
    - Water supplied trap primers, and
    - Applicable industrial uses (NCDENR 0.2U defines these)
    - Accessible if less than 150% of distance to potable line

#### Section 704: Treatment Devices

- 704.3: Onsite reclaimed water system applicable to graywater and wastewater
- Water use in toilet and urinals or irrigation AND SIMILAR APPLICATIONS
- NSF 350

## Ch 7, section 706: Non-Potable Water Requirements

- 706.1: Scope Use and application comply w/local laws, rules and ordinances
- 706.2: Signage "Non-Potable water is used for... DO NOT DRINK"
- 706.3: Quality Rules and regs in local jurisdiction or NSF 350

## Section 707 – Rainwater Collection and Distribution

- 707.11.5: Filtration intended use
- 707.11.6: Disinfection intended use
- 707.11.7.2: Materials NSF 61 if potable use

## Section 708 – Gray Water Systems

- 708.2: Permits Local jurisdiction
- 708.3: Potable connection backflow protection
- 708.5.1 Gray water irrigation
  - Surface and subsurface irrigation
  - 24 Hr retention time

## Section 709: Reclaimed Water Systems

- 709.2: Permits Required!!!
- 709.3: Potable Connections Protected
- 709.5: Applications used IAW section 706 and local codes
- 709.1: Tests and Inspections
  - 709.10.1: testing make up piping and reclaimed system
  - 709.10.2: inspection and testing of backflow prevention assemblies IAW 312.10 IPC

## Section 710: Alternative Onsite Nonpotable Water Sources

 710.1: including but not limited to stormwater, RO reject water, foundation drain water, pool backwash shall be permitted if properly treated for intended use and IAW local jurisdiction requirements

# Ch 9: Commissioning, O and M

- 901.1: Scope Pre and Post occupancy issues
- 903.1: Commissioning -
  - Registered design professional requirements
  - Commissioning plan
  - 904.3: Building O and M
    - Record documents
    - O and M manual shall be provided to owner

## **Selected Standards**

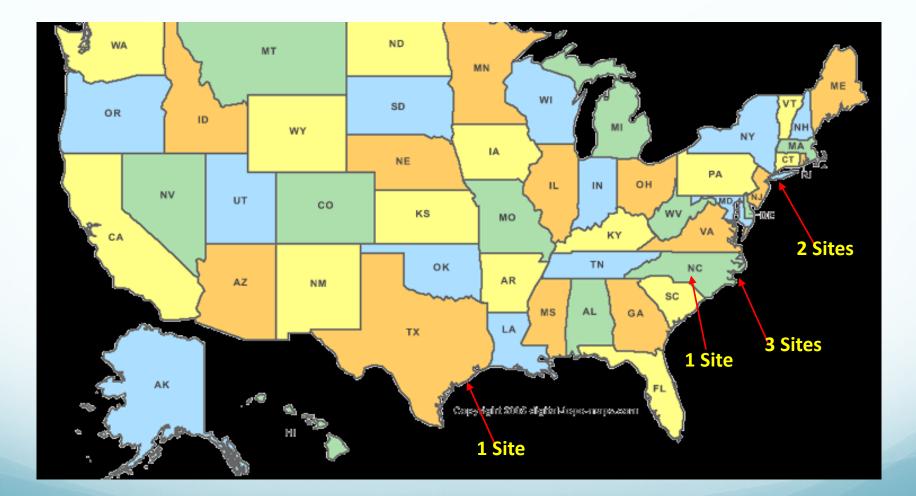
| Jurisdicti<br>on | Turbidit<br>y | BOD | TSS | Coliform | C.<br>perfringens | Coliphag<br>e |
|------------------|---------------|-----|-----|----------|-------------------|---------------|
| CA               | 2             | NS  | NS  | 2.2      |                   |               |
| FL               |               | 20  | 5   | ND       |                   |               |
| NC               | 5             | 10  | 5   | 14       | -3 log            | -4 log        |
| VA               | 5             | 10  | 5   | 14       |                   |               |
| NYC              | 2             | 10  | 10  | 2.2      |                   |               |

#### Additional Information and NC/CDC/NEHA Research Report

- Water Environment Research Foundation (WERF) funded research project When to Consider Distributed Systems in Urban and Suburban Areas
- Products
  - Detailed case study summaries, white papers
  - MCDA-based decision-support tool
  - Database of case studies
  - Other targeted communications products (journal articles, presentations, etc.)

Public access at www.werf.org and www.ndwrcdp.org

#### Pradahn: Decentralized Reuse,


#### **Objectives:**

- 1. Feasibility of using reclaimed water from decentralized systems as non-potable waters for rural and urban communities
- 2. Implications for public health and environmental quality

# **Materials and Methods**

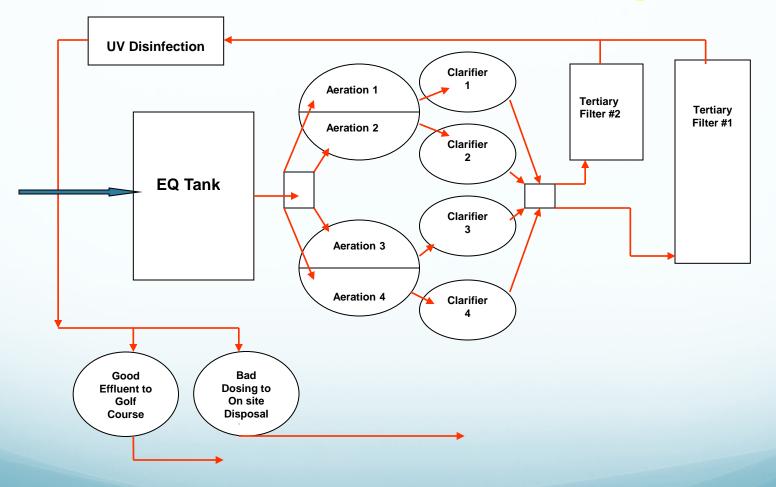
- Functioning decentralized WW treatment systems across the United States
- One year assessment of decentralized WW reuse system performance
- Routine influent and reclaimed water quality monitoring

#### **Study sites**



59

# **Study sites**

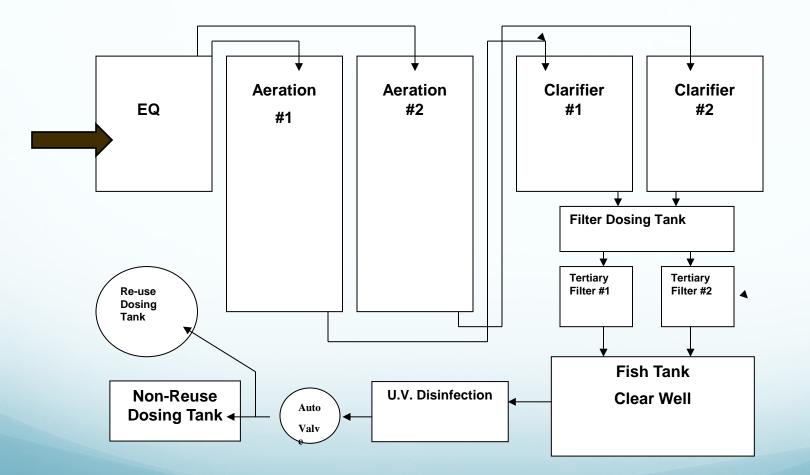

| Site ID   | Facility Type                                                                              | Type of Reuse                                                             | Treatment Systems                | Scale of reuse                                                                     |
|-----------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------|
|           | Resort; golf course<br>community with two hotels<br>and small commercial; 900<br>customers |                                                                           | tertiary filtration              | Large-scale multi-<br>subdivision development;<br>cluster                          |
| VDNC      |                                                                                            | common grounds; water                                                     |                                  | Large-scale subdivision & commercial district; cluster                             |
| C<br>GWNC | community; small;                                                                          | Surface irrigation at<br>individual homesites &<br>common areas           |                                  | Small-scale condominium complex; cluster                                           |
| D<br>GSNC | high school and middle                                                                     |                                                                           | and tidal wetland<br>w/Cl and UV | Small-scale, on-site;<br>"wastewater mining";<br>advanced on-site backup<br>system |
| E<br>KETX | •                                                                                          | Surface irrigation system with pop-up sprayers                            |                                  | <b>Very small-scale</b> cluster system; on-site                                    |
| F<br>VNYC |                                                                                            |                                                                           | Ozonation                        | <b>Medium-scale</b> on-site;<br>"sewer mining"; sewer<br>backup                    |
| G<br>SNYC | -                                                                                          | Toilet flushing in high-<br>rise, chiller makeup<br>waters and irrigation | Ozonation                        | Medium-scale on-site;<br>"sewer mining"; sewer<br>backup 60                        |

# Site A WWTP

- A privately held Public Utility
  900 customers
- Design flow = 600,000 gpd
- Avg. daily flow = 350,000 gpd
- Non Compliant effluent less than 1% of time
- Activated sludge followed by tertiary treatment
- UV disinfection



#### Site A - process flow diagram




#### Site B WWTP

- Serves about 475 customers
- Design flow:500,000 gpd
- Actual flow:
  - 20,000 to 25,000 gpd
- Extended Aeration process
- UV disinfection



# Process diagram for site B WWTP plant



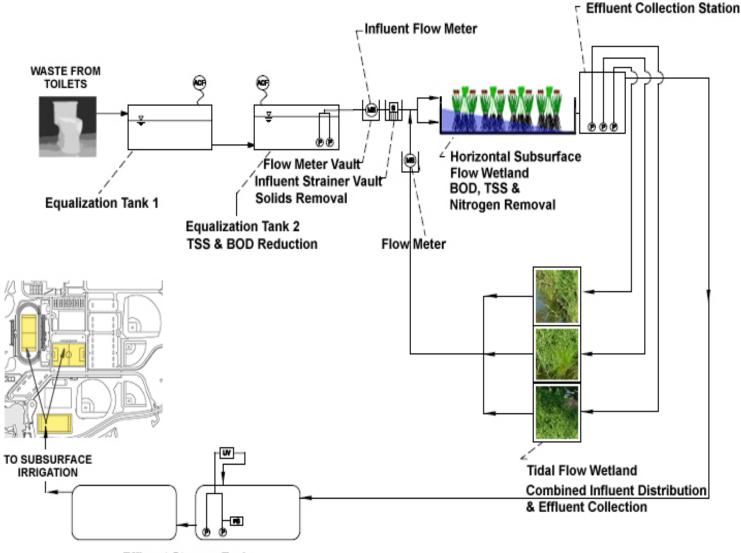
64

# Site C

- A privately held Public Utility serves about 41 patio houses
- Total design flow = 36,000 gpd
- Activated sludge followed by clarifier and then sand filter with chlorine disinfection
- Chlorine dosing = 0.5ppm



# Site D


- Wastewater flow 25,000 gpd
- Horizontal flow wetland nitrification basin with gravel media and aquatic plants
- Three tidal marsh upflow wetland denitrification biofilters with medium and coarse sand media and aquatic plants
- Storage, disinfection, and pumping to drip irrigate athletic fields
  - Stadium football field
  - Football field
  - soccer field



**Tidal Marsh Upflow Wetland** 



#### Site D - Process flow diagram



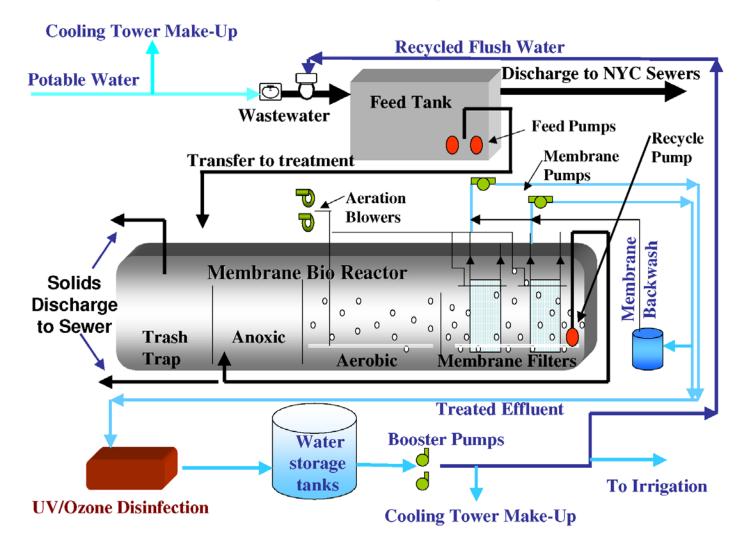
Effluent Storage Tanks

# Site E

- Design flow = 770 gpd
- Actual flow = 600 gpd
- Suspended growth ATU with chlorine disinfection
- All of the reclaimed water is used in the spray field






# Site F

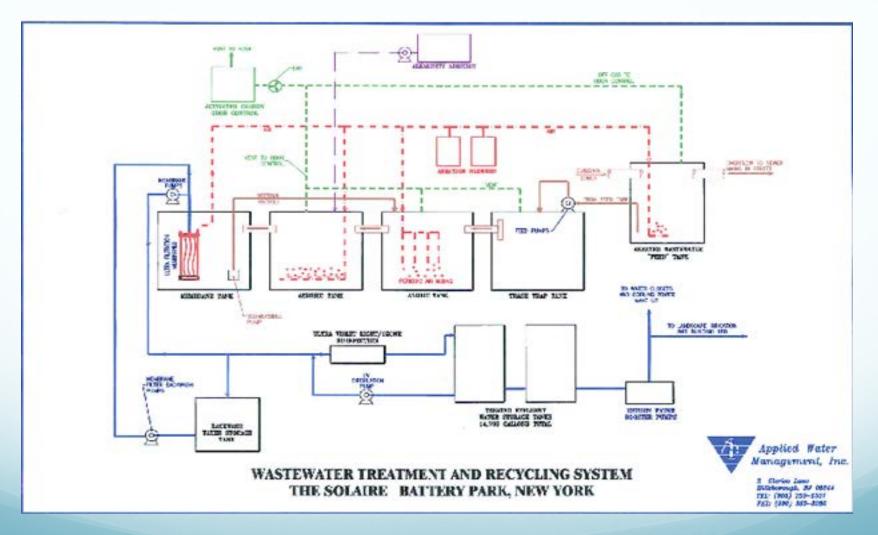
- 251 Condominiums (35 stories)
- 30,000 gpd WW treatment
  plant
- Platinum Certification LEED
- 48% reduction in water use
- > 50% reduction in wastewater discharge
- MBRs Ultra-filter
- UV and Ozone

Source: Edward A. Clerico, P.E., President Alliance Environmental LLC

#### Site F - Process flow diagram

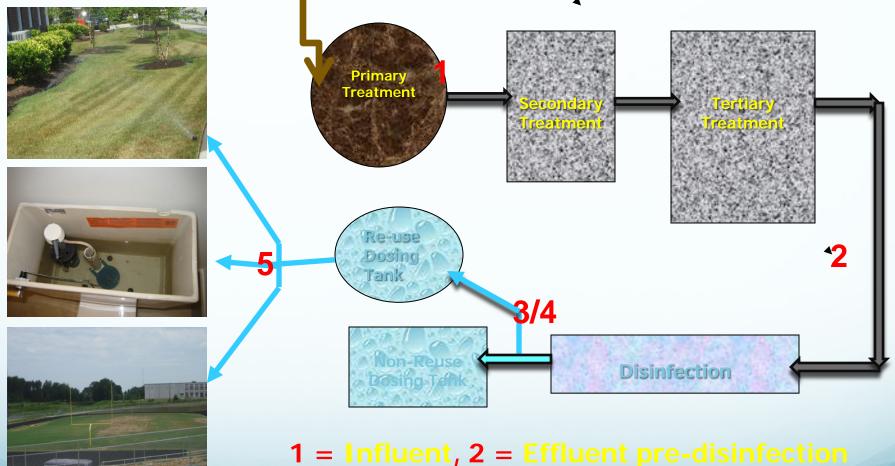
#### **Schematic Flow Diagram**




# Site G

- 293 units
- 25,000 GPD WW
  treatment plant
  LEED Gold
  - Certification
- 48% reduction in water use
- 56% reduction in wastewater discharge




Source: Edward A. Clerico, P.E., President Alliance Environmental LLC

#### Site G - Process flow diagram



72

## **Sampling ports**



3 = Effluent post disinfection, 4 = Ultra filtration and 5 = End point distribution

73

# **Results and discussions**

#### ROD-

| Study | <b>Influent BOD</b> <sub>5</sub> |     |     | <b>Effluent BOD</b> <sub>5</sub> |     |     | %           | ANOVA    |
|-------|----------------------------------|-----|-----|----------------------------------|-----|-----|-------------|----------|
| Sites | Avg.                             | Min | Max | Avg.                             | Min | Max | Reduction   | (95% CI) |
| Α     | 160                              | 85  | 290 | 1                                | <2  | <2  | 99.4        | Α        |
| B     | 340                              | 161 | 460 | 3                                | <2  | 8   | 99.1        | Α        |
| С     | 624                              | 280 | 901 | 4                                | <2  | 10  | 99.4        | Α        |
| D     | 81                               | 25  | 186 | 13                               | 15  | 21  | 83.4        | B        |
| E     | 114                              | 65  | 133 | 9                                | 4   | 15  | 91.8        | Α        |
| F     | 219                              | 192 | 234 | 3                                | <6  | <6  | <b>98.6</b> | Α        |
| G     | 175                              | 153 | 193 | 3                                | <6  | <6  | 96.3        | Α        |

EPA Guideline = 10 or less; NC rules = Monthly avg. 10 or less, daily max **75** 15, site E home

#### **TSS**

| Study | Influent TSS |     |      | <b>Effluent TSS</b> |     |     | %         | ANOVA |  |
|-------|--------------|-----|------|---------------------|-----|-----|-----------|-------|--|
| Sites | Avg          | Min | Max  | Avg                 | Min | Max | Reduction |       |  |
| Α     | 129          | 53  | 232  | 1.3                 | <1  | 2.3 | 99.0      | AB    |  |
| В     | 201          | 158 | 257  | 1.4                 | <1  | 4   | 99.3      | AB    |  |
| С     | <b>583</b>   | 71  | 1136 | 2.8                 | <1  | 6.7 | 99.5      | Α     |  |
| D     | 26           | 19  | 35   | 2.3                 | <1  | 3.5 | 91.0      | В     |  |
| E     | 50           | 44  | 56   | 8.0                 | 5   | 12  | 84.0      | С     |  |
| F     | 296          | 262 | 320  | 0.8                 | <1  | 1   | 99.7      | Α     |  |
| G     | 237          | 208 | 260  | 0.5                 | <1  | <1  | 99.8      | Α     |  |

EPA Guideline = N/A; NC rules = Monthly avg. 5 or less, daily max 15

#### **Total Nitrogen**

| Study | Influent TN |     |     | Eff | luent | TN  | %               | ANOVA |
|-------|-------------|-----|-----|-----|-------|-----|-----------------|-------|
| Sites | Avg         | Min | Max | Avg | Min   | Max | 70<br>Reduction |       |
| Α     | 51          | 25  | 103 | 21  | 6     | 38  | 58              | В     |
| В     | 52          | 29  | 73  | 13  | 5     | 24  | 76              | AB    |
| С     | 71          | 61  | 84  | 16  | 5     | 37  | 77              | AB    |
| D     | 160         | 130 | 199 | 24  | 16    | 32  | 85              | Α     |
| Ε     | <b>59</b>   | 6   | 68  | 15  | 9.6   | 18  | 75              | AB    |
| F     | 63          | 61  | 65  | 29  | 20    | 36  | 54              | AB    |
| G     | 56          | 48  | 65  | 31  | 24    | 38  | 45              | B     |

## **Turbidity**

| Study | Ι   | nfluen | nt  | k   | Cffluer | %   |           |
|-------|-----|--------|-----|-----|---------|-----|-----------|
| Sites | Avg | Min    | Max | Avg | Min     | Max | Reduction |
| Α     | 71  | 65     | 80  | 0.9 | 0.3     | 2   | 98.7      |
| В     | 117 | 77     | 160 | 0.8 | 0.2     | 1.7 | 99.3      |
| С     | 194 | 88     | 390 | 1.4 | 0.2     | 2.7 | 99.3      |
| D     | 16  | 12     | 22  | 0.4 | 0.2     | 0.5 | 97.7      |
| E     | 50  | 34     | 88  | 4.1 | 2.3     | 6.9 | 91.9      |
| F     | 65  | 49     | 77  | 0.3 | 0.1     | 0.4 | 99.6      |
| G     | 50  | 4      | 83  | 0.2 | 0.0     | 0.2 | 99.7      |

EPA Guideline = (Weekly avg. 2 or less, should not exceed 5 any time); NC rules = Turbidity (10 or less)

# **Microbial Indictors**

| Study | Geo mean (CFU/100 ml)/Log Reduction |                     |                         |                   |  |  |  |  |  |
|-------|-------------------------------------|---------------------|-------------------------|-------------------|--|--|--|--|--|
| sites | E. coli                             | C. perfringens      | Total coliform          | Enterococci       |  |  |  |  |  |
| Α     | <10/ <b>&gt;6</b>                   | 16/ <mark>3</mark>  | 176/<5                  | 5/ <mark>5</mark> |  |  |  |  |  |
| В     | 57/ <mark>5</mark>                  | 58/ <mark>3</mark>  | >1945/<4                | 23/4              |  |  |  |  |  |
| С     | <1/>8                               | 100/ <mark>3</mark> | 169/ <mark>&lt;6</mark> | <2/6              |  |  |  |  |  |
| D     | 2/5                                 | < <mark>3/3</mark>  | <b>101/4</b>            | <2/4              |  |  |  |  |  |
| Ε     | <41/>4                              | <b>31/1</b>         | <185/<4                 | <24/<3            |  |  |  |  |  |
| F     | <1/>>6                              | <1/>                | <1/>7                   | <1/>>6            |  |  |  |  |  |
| G     | <1/>7                               | <1/>>5              | <1/>7                   | <1/>>6            |  |  |  |  |  |

NC rules (2U)= E. coli: 3 or less, daily max 25 (Class A-indoor), 14 or less, daily max 25 (Class B)

#### **Microbial re-growth reoccurrence**

| Study Sites | E. Coli (port 3) | E. Coli (port 5) |  |  |
|-------------|------------------|------------------|--|--|
| Study Sites | CFU/100ml        | CFU/100ml        |  |  |
| Α           | <10              | <12              |  |  |
| B           | 57               | 35               |  |  |
| С           | <1               | 1                |  |  |
| D           | 2                | 1                |  |  |
| Ε           | <41              | 228              |  |  |
| F           | <1               | <1               |  |  |
| G           | <1               | <1               |  |  |



Use of reclaimed effluent from DWR systems can reduce demands on potable water supplies by providing local water supplies for meeting non-potable needs in homes and communities.

These options are supported by regulatory agencies, water supply agencies, manufacturers, and the public

This approach provides great potential for cost reduction and energy saving in wastewater transport and process, reduces usage of high value, high dollar, energy intensive drinking water and enhance environmental protection opportunities.