

00

Sergio M. Abit Jr., PhD Associate Professor of Soil Science State Specialist on Onsite Wastewater Treatment Systems

Subsurface Fates of **Contaminants from Onsite Septic Systems**

Today's Target

Improved appreciation of what we do.

Better understanding of the processes involved in the treatment of key contaminants from OWTS.

NowA

To strengthen and promote the onsite and decentralized wastewater industry.

Subsurface Fates of Contaminants from Onsite Septic Systems

Sergio M. Abit Jr., PhD Associate Professor of Soil Science State Specialist on Onsite Wastewater Treatment Systems

1.Nitrogen Contaminants 2.Phosphorus + 3.Pathogenic **Bacteria**

Fates 1. Transformations 2. Transport

3. Sorption (Attachment) 4. Survival

Why worry about nitrogen and phosphorus?

They are environmental and health hazards

Photo: www.hobbyfarms.com

Why worry about pathogenic bacteria?

Tarnishes the reputation of the OWTS Industry

Portage River Basin, OH

Examiner, April 12, 2010 Failed septic systems a major cause of bacteria in Portage River basin

Pathogenic Bacteria in Onsite Wastewater

Bacteria

Escherichia coli (pathogenic)

Legionella pneumophila

Leptospira spp.

Salmonella typhii

Salmonella

Shigella

Vibrio cholerae

Yersinia enterocolitica

Source: FDOH (2011) and Lowe et al. (2007).

Pathogenic Bacteria in Onsite Wastewater

Bacteria	Disease caus
<i>Escherichia coli</i> (pathogenic)	Gastroenteritis
Legionella pneumophila	Legionellosis (Legionnaire disease)
Leptospira spp.	Leptospirosis (Weil's disea
Salmonella typhii	Typhoid fever
Salmonella	Salmonellosis
Shigella	Shigellosis (Bacillary dyse
Vibrio cholerae	Cholera
Yersinia enterocolitica	Gastroenteritis

Source: FDOH (2011) and Lowe et al. (2007).

Pathogenic Bacteria in Onsite Wastewater

Bacteria	Disease caused	Symptoms
<i>Escherichia coli</i> (pathogenic)	Gastroenteritis	Diarrhea
Legionella pneumophila	Legionellosis (Legionnaires' disease)	Malaise, acute respiratory illness
Leptospira spp.	Leptospirosis (Weil's disease)	Jaundice, fever
Salmonella typhii	Typhoid fever	High fever, diarrhea
Salmonella	Salmonellosis	Vomiting, abdominal pain, diarrhea
Shigella	Shigellosis (Bacillary dysentery)	Dysentery
Vibrio cholerae	Cholera	Diarrhea, dehydration
Yersinia enterocolitica	Gastroenteritis	Diarrhea

Source: FDOH (2011) and Lowe et al. (2007).

What happens to excess N, P and pathogenic bacteria at the Soil Treatment Area (STA)?

Two dissolved forms of nitrogen: 1.Nitrate (NO_3^{-}) 2.Ammonium (NH_4^+) Main form of nitrogen in wastewater in the septic tank

Before we discuss nitrogen...

Guess What... Soil has a charge!

Soil pH : 7

Forms of Nitrogen

Soil Treatment Area (STA)

Forms of Nitrogen

What about nitrate (NO_3^-) ?

Forms of Nitrogen

Leachate may have high nitrate concentration

Forms of Nitrogen

What is going to happen to nitrate?

Fates of Nitrogen in the STA

1.Leached by moving water- may pollute groundwater 2. Taken-up by plant roots and utilized by soil microorganisms 3. Undergo denitrification

Denitrification?

 NO_{2}

 $\rightarrow N_2^{\uparrow}$ - Active bacteria - Organic matter - Saturated conditions - Anaerobic conditions

Nitrate (NO_3^{-})

What type of soil/site to look for to increase likelihood of treating nitrate?

1. Medium textured soils or finer Higher chance that nitrate is removed from the wastewater before it reaches the

groundwater

2. Deep water table

Soluble forms of P in Septic Tank

1.H₂PO₄⁻

Negatively charged but are effectively attached to soil **2.4** particles by forming chemical bonds with other substances

What is going to happen to phosphate?

- form insoluble complexes with Fe, Al or Mg or Ca in soil
- Attach to soil coatings

Bottom of the trench

- Unsaturated

What is going to happen if the water table comes close to the bottom of the trenches?

moving water

What type of soil/site to look for to increase likelihood of treating phosphorus?

1. High clay content (that effectively allows water flow) high P sorption or attachment potential

2. Red Soils – high iron content

3. Deep water table

Images:

homoartificialis.wordpress.com blogs.discovermagazine.com popsci.com guardian.co.uk

Characteristics:

- 1.Some are pathogenic
- 2. Some are motile
- 3. Have varied surface charge properties (different degrees of negativity)
- 4. Survival depends on:
- **Moisture Condition**
- Adequate Carbon
- Soil pH (6-8)
- Aeration
- Ability to compete with other bacteria

Fates in the soil:

- 1. Could be attached to or filtered by the soil
- 2. Multiply under favorable growing conditions
- 3. Not survive if out-competed by native soil organisms

Soil properties to look for to increase likelihood of treating bacteria in onsite wastewater:

1. The finer the soil texture, the better (fine but still allows effective water movement).

More effective Filtration and Surface Attachment

Soil properties to look for to increase likelihood of treating bacteria in onsite wastewater:

1. The finer the soil texture, the better (fine but still allows effective water movement).

More effective **Filtration** and Surface Attachment

Bacteria - Filtration

Coarse-Textured Soils

Fine/Medium-Textured Soils

Bacteria - Filtration

Influence of Soil Texture

Bacteria – <u>Sorption</u> (surface attachment)

Surface attachment; dependent on particle surface area

> Largely influenced by particle size

How is surface area related to particle size?

Volume d³

Surface Area 6d²

Surface Area/ Volume $6d^2/d^3 = 6/d$

Volume $8(d/2)^3 = d^3$ Surface Area $8x6(d/2)^2 = 48d^2/4$ Surface Area/ Volume $12d^2/d^3 = 12/d$

Volume $1000(d/10)^3 = d^3$ Surface Area $1000x6(d/10)^2 = 6000d^2/100$ Surface Area/ Volume $60d^2/d^3 = 60/d$

Surface Area/ Volume = 6/d

Surface Area/ Volume = 12/d

Surface Area/ Volume = 60/d

Particle	Effective	Surface	Specific
	Diameter	Area	Surface
	(cm)	(cm ²)	Area (cm ² /g)
Sand	5 x 10 ⁻³	7.9 x 10 ⁻⁵	445

Roth

Particle	Effective Diameter (cm)	Surface Area (cm ²)	Specific Surface Area (cm ² /g)
Sand	5 x 10 ⁻³	7.9 x 10 ⁻⁵	445
Clay	2 x10 ⁻⁴	6.3 x10 ⁻⁸	7.4 x 10 ⁶

Roth

Bacterial Retention –Effect of Texture

Applied suspension with known concentrations of *E. coli* and *Salmonella*

Fine Sand 0.5% clay

Sandy Loam 12.5% clay

Bacterial Retention –Effect of Texture

Result from a bacterial transport experiment using soil columns involving E.coli and Salmonella

	Clay (%)	Fractional
		E. coli
Fine Sand	0.50	87

Bacterial Retention –Effect of Texture

Result from a bacterial transport experiment using soil columns involving E.coli and Salmonella

	Clay (%)	Fractional E. coli
Fine Sand	0.50	87
Sandy Loam	12.5	0.04

Soil properties to look for to increase likelihood of treating bacteria in onsite wastewater:

1. Medium- and Fine-textured soils are better

Soil properties to look for to increase likelihood of treating bacteria in onsite wastewater:

1. Medium- and Fine-textured soils are better

2. Red soils are better **Coated with Iron Oxides**

Soil properties to look for to increase likelihood of treating bacteria in onsite wastewater:

- 1. Medium- and Fine-textured soils are better
- 2. Red soils are better
- 3. Well-drained soils
 - **Deep Water Table**
 - Thick unsaturated zone

Well-drained Soils

Well-drained Soils

What happens to bacteria in an unsaturated or aerobic STA?

- 1.Anaerobic bacteria will weaker.
- 2.Anaerobic bacteria will be out-competed by native aerobic bacteria in the soil.
- 3.Attachment is more effective.

What happens to bacteria in an unsaturated or aerobic STA?

1.Anaerobic bacteria will weaker.

2.Anaerobic bacteria will be out-competed by native aerobic bacteria in the soil.

3.Attachment is more effective.

Result from an *E. coli* transport experiment using soil columns with fine sand

	Percent Re
	Sc
Saturated Soil	19

etained in bil

Result from an *E. coli* transport experiment using soil columns with fine sand

	Percent Re
	50
Saturated Soil	19
Unsaturated	42
Soil	

etained in il

Take-home Points: Nitrogen

- 1.Ammonium (NH₄⁺) is the main form of N in septic tanks.
- 2.In aerobic STAs, NH_4^+ is converted to nitrate (NO_3^-).
- 3. Because soil surfaces are negatively charged, the negativelycharged nitrate is effectively carried by the water downward.
- 4. Enough vertical separation should be provided so that nitrate may be removed by:
 - a)Root uptake
 - b)Utilization by soil microorganisms
 - c)Denitrification

Take-home Points: Phosphorus

- 1.In septic tanks, dissolved P are in anionic forms $(H_2PO_4^-, HPO_4^2)$.
- 2.Dissolved P are effectively attached to: Fe and Al oxides or Ca and Mg
- 3. To increase the likelihood of treatment of P-enriched onsite wastewater, the STA has to have:
 - a) Soils with high clay content
 - b) Red Soils
 - c) Well-drained soil (deep water table)

Take-home Points: Bacteria

- 1.Some bacteria in septic waste water are pathogenic.
- 2. To increase the likelihood of treatment of bacteria in onsite wastewater, the STA has to have:
 - a) Soils with high clay content
 - b) Red Soils
 - c) Well-drained soil (deep water table)

Second Talk @ 4 PM

Microbiology in Advanced Treatment Systems

How do we end?

Improved appreciation of what we do.

Better understanding of the processes involved in the treatment of key contaminants from OWTS.

Sergio M. Abit Jr., PhD sergio.abit@okstate.edu osusepticwater@okstate.edu (405) 744-9586

OKLAHOMA COOPERATIVE EXTENSION

Thank you!