

Maximizing Water Efficiency in Single Family Homes: Lessons from 20 Years of Study

Based on Empirical Data from Five Key End Use Studies By: William DeOreo, P.E. Aquacraft, Inc. Boulder, CO

Introduction: the Water/Power Nexus

- The two essential items for making a house a home are water and power. With adequate supplies of these one can live comfortably almost anywhere on planet Earth.
- Of the two, water is the more critical: you can find substitutes for electricity and gas, but there are no substitutes for water.
- It takes ~ 25 kwh/day of electricity for a home, but up to 150+ kwh/day if you use AC, electric heat, or charge an electric car.
- The typical SF home currently uses ~140 gphd of water, but this could drop to as low as 70 gphd with special measures.

Key Findings

- Single family water use is decreasing on both a household and a per-capita basis
- Major reductions seen in toilets and clothes washer use
- Significant reductions seen in off-the-shelf new homes.
- The best reductions seen in high efficiency homes (retrofit homes and high efficiency new homes)
- This trend should continue into the future and should be used for future planning studies.
- Outdoor Use was Lower
- We are seeing the limits of conservation.

Five Studies, Six Groups

- REUWS (1997) provides the baseline for existing homes (year o)
- California SF Study (2007) provides a reference for existing homes (10 years after REUWS)
- EPA New Home Study provides two groups
 - Standard new homes, built in 2001, sampled in 2007
 - High efficiency new homes, built around 2006, designed for maximum water use efficiency
- EPA Retrofit Study provides sample of existing homes brought up to high efficiency standards through retrofits
- REUWS2 (2014) Follow-up to REUWS1 17 years later to see how baseline has changed

Common Methodology:

Looking beyond billing data

- Selection of random samples from population
- Collection of highly detailed information
 - Surveys to identify key variables
 - Data logging to disaggregate water use
 - GIS analysis of landscapes
- Analysis of indoor and outdoor water use
 - Determination of household and per-capita use
 - Analysis of efficiency of fixtures and appliances
 - Determination of actual irrigation vs. requirements

• Results show conservation potential in homes.

Indoor End-uses Identified by

event

- Toilets
- Showers
- Clothes Washers
- Dish washers
- Baths
- Leaks
- Faucets
- Other

Simply strap the magnetic sensor to the side of the water meter

Data loggers provide high resolution flow trace from meter.

• Brainard Meter Master 100 EL

The sensor picks up the motion of the internal magnets in the meters

The secret is in the flow profiles and Trace Wizard analysis tool.

This is a toilet flush:

Note the parameters used by Trace Wizard to identify this and all similar events during the logging period.

Volume: 4.92 gallons per flush Peak Flow: 5.56 gpm Duration: 1 minute 20 seconds Mode flow, start time, end time and other similar events are also listed.

Typical bathroom sequence: shower, toilet, faucet

A shower is followed by a toilet flush (with a bit of leakage) and a faucet use.

This is a very typical combination

Two clothes washers and a dishwasher with some miscellaneous faucets and leak

Declining Indoor Water Use

GPDH

■ GPDH

Per Capita Use is Declining

(normalized data)

Biggest Declines in Toilets & CW's

Non-linear nature of demand

 Water demands increase with residents following a power curve relationship:

$$Y = c R^{x < 1}$$

Per-capita Use is Non-Linear

Linear approach can lead to big

errors

Declining Flush Volumes

Gallons per Flush

Unexpected Toilet Volume Distribution

Distribution of Flush Volumes in New Homes

Leaks are Skewed

Leakage Rate (gphd) Aquacraft, Inc. 2709 Pine Street, Boulder, CO 80302, www.aquacraft.com, bill@aquacraft.com

Leakage by % of Volume

Leakage Rate (gphd)

Increasing Percentage of Efficient Homes

Determining Per Capita Usage

Parameter	REUWS	California	Standard	EPA post-	High-efficiency New
	(built before	Single	New Homes	retrofit group	Homes
	1995)	Family	(built since		
			2001)		
Mean (gphd)	177	186	140	107	105
Per capita	$87.41x^{0.69}$	72.67x ^{0.73}	66.30x ^{0.63}	50.21x ^{0.77}	59.58x ^{0.53}
relationship (gphd=)					
Household use for	187	162	132	117	107
family of 3 (gphd)					
Projected per capita					
use for family of 3	62	54	44	39	36
(gpcd)					
(gpcd)	62	54	44	39	36

Grouping Houses by Efficiency

Comparisons of Household Use vs Residents

Factors that Affect Indoor Use

- Number of residents (+)
- Presence of Leaks (100 gpd) (+)
- Presence of High efficiency toilets and clothes washers
 (-)
- Presence of child or youth (-)
- Presence of garbage disposals and dishwashers (-)

The super conserving home

Outdoor Parameters (Look Similar)

- Existing Homes (Cal SF)
 - Lot Size ~9200 sf
 - Irrigated Area ~3400 sf
 - Outdoor Use ~93 kgal
 - Application ~57 in
 - ETo ~ 42 in
 - App Ratio ~1.36
 - Ave Excess ~ 29.4 kgal
 - Var from ET ~6.5 kgal

- New Homes (EPA)
 - 10,100 sf
 - 3700 sf
 - 78 kgal
 - 56 in
 - 43 in
 - 1.30
 - 30 kgal
 - 7.3 kgal

Factors that Affect Outdoor Use

- Net ET (in)
- Irrigated Area (SF)
- Income (\$)
- Landscape Ratio (TIR/Ref Requirement)
- Pool (?)
- Excess Irrigation (?)
- Sprinkler (?)

Something you can plan on.

- Planners have to include new demands in water supply models.
- Capitalize on benefits of conservation efforts.
- Avoid costly overbuilding.

Recommendations

- Look beyond your billing data
- Create better tracking tools
- Get to know your customers better
- Do some sampling and measurements
- Develop demand models from local data
- Use this information for demand projections
- Follow-up with periodic updates for evaluation